

Flipping Physics Lecture Notes:

Centripetal Acceleration Introduction

When an object is rotating at a constant angular velocity, the whole object has a constant angular velocity. Therefore, every mint on the turntable has the same, constant angular velocity.

Looking at a single mint on the turntable:

- $\omega=$ constant
- Because the angular velocity is constant, there is no angular acceleration.
- $\alpha=\frac{\Delta \omega}{\Delta t}=\frac{0}{\Delta t}=0$
- Because the angular acceleration is zero, the tangential acceleration of the mint is zero.

$$
a_{t}=r \alpha=r(0)=0
$$

- The angular velocity of the mint is constant, however, the tangential velocity of the mint is not constant. Remember tangential velocity is a vector.
- The magnitude of the tangential velocity of the mint is constant.
- The direction of the tangential velocity of the mint is not constant.
- Because the tangential velocity of the mint is changing, the mint must have a linear acceleration.
- $\overrightarrow{\mathrm{a}}=\frac{\Delta \vec{V}}{\Delta t}$ (If velocity is changing, there must be a linear acceleration.)
- As shown above, this line acceleration is not a tangential acceleration.
- It also is not an angular acceleration.
- Angular acceleration is angular, not linear.
- Also, it's zero anyway.
- The acceleration which causes the tangential velocity to change direction is called Centripetal Acceleration.

Centripetal Acceleration:

- The acceleration that causes circular motion.
- "Centripetal" means "Center Seeking".
- Centripetal acceleration is always in toward the center of the circle.
- Coined by Sir Isaac Newton. Combination of the Latin words "centrum" which means center and "petere" which means "to seek".
- Is a linear acceleration.
- $a_{c}=\frac{v_{t}^{2}}{r}=\frac{(r \omega)^{2}}{r}=\frac{r^{2} \omega^{2}}{r}=r \omega^{2} \Rightarrow a_{c}=\frac{v_{t}^{2}}{r}=r \omega^{2}$
- Base S.I. units for centripetal acceleration are $\frac{m}{s^{2}}$

$$
a_{c}=r \omega^{2} \Rightarrow(m)\left(\frac{r a d}{s}\right)^{2}=\frac{m \cdot r a d^{2}}{s^{2}}=\frac{m}{s^{2}}
$$

