

Flipping Physics Lecture Notes:
How Much is a Mermaid Attracted to a Doughnut?
(Newton's Universal Law of Gravitation)
Example: A 17 g doughnut is sitting 21 cm from a 14 g mermaid. Determine the force of gravitational attraction between the two.

Knowns: $m_{d}=17 g\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right)=0.017 \mathrm{~kg} ; m_{m}=14 g\left(\frac{\mathrm{lkg}}{1000 \mathrm{~g}}\right)=0.014 \mathrm{~kg}$;
$r=21 \mathrm{~cm}\left(\frac{\mathrm{~lm}}{100 \mathrm{~cm}}\right)=0.21 m ; F_{g}=$ ?

$F_{g}=\frac{G m_{1} m_{2}}{r^{2}}=\frac{G m_{d} m_{m}}{r^{2}}=\frac{\left(6.67 \times 10^{-11}\right)(0.017)(0.014)}{0.21^{2}}=3.59968 \times 10^{-13} \approx 3.6 \times 10^{-13} \mathrm{~N}$

In an otherwise empty universe, the doughnut and mermaid meet at their two-object center of mass:

$$
x_{c m}=\frac{m_{d} x_{d}+m_{m} x_{m}}{m_{d}+m_{m}}=\frac{(17)(0)+(14)(21)}{17+14} \Rightarrow x_{c m}=9.4839 \approx 9.5 \mathrm{~cm}
$$

