

Flipping Physics Lecture Notes:
Resistor Series and Parallel Circuits
http://www.flippingphysics.com/resistor-series-parallel.html
When an anthropomorphic ${ }^{1}$ charge has no choice but to go through two circuit elements, those two circuit elements are in series. For example, a charge which goes through resistor 1 has no choice but to also go through resistor 2 . There is no other path for the anthropomorphic charge to choose.

The currents through the three circuit elements must all be equal:

$$
I_{t}=I_{1}=I_{2}
$$

The " t " in the subscript refers to the current at the terminals of the battery which is the current delivered by the battery to the circuit.

The electric potential difference across the battery equals the summation of the electric potential difference across the two resistors:
$\Delta V_{\text {bottom }}$ wire \rightarrow top wire $=\varepsilon=\Delta V_{1}+\Delta V_{2}$

(If you'd prefer to look at this in terms of the electric potential difference around the loop in the circuit:)
$\Delta V_{\text {loop }}=V_{f}-V_{i}=V_{a}-V_{a}=0=\varepsilon-\Delta V_{1}-\Delta V_{2} \Rightarrow \varepsilon=\Delta V_{1}+\Delta V_{2}$
We know Onm's law: $\Delta V=I R_{\text {; therefore, }, \ldots}$

$$
\begin{aligned}
& \Rightarrow \varepsilon=I_{t} R_{\mathrm{eq}}=I_{1} R_{1}+I_{2} R_{2} \\
& \Rightarrow R_{\mathrm{eq}}=R_{1}+R_{2}
\end{aligned}
$$

The "eq" in the subscript means equivalent. In other words, $\mathrm{R}_{\text {eq }}$ is one resistor with the equivalent resistance of the two resistors.

Therefore, the equation for the equivalent resistance of n resistors in series is:
$R_{\text {eq series }}=\sum_{n} R_{n}=R_{1}+R_{2}+\ldots$
When an anthropomorphic charge has the choice between two circuit
 elements and then the paths through those two circuit elements reconverge without going through another circuit element, the two circuit elements are in parallel.

When circuit elements are in parallel, their electric potential differences are equal:
$\varepsilon=\Delta V_{1}=\Delta V_{2}$
Note the junctions at points a and b . Due to conservation of charge, the net current going into a junction equals the net current coming out of a junction. For junction a:

[^0]$I_{\text {in }}=I_{\text {out }} \Rightarrow I_{t}=I_{1}+I_{2}$
We can then use Ohm's law:
$\Delta V=I R \Rightarrow I=\frac{\Delta V}{R} \Rightarrow \frac{\varepsilon}{R_{\text {eq }}}=\frac{\Delta V_{1}}{R_{1}}+\frac{\Delta V_{2}}{R_{2}} \Rightarrow \frac{1}{R_{\text {eq }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$
And we get the equivalent resistance for the two resistors in parallel:
$\Rightarrow R_{\mathrm{eq}}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)^{-1}$
And the equivalent resistance for n resistors in parallel:
$\Rightarrow R_{\text {eq parallel }}=\left(\sum_{n} \frac{1}{R_{n}}\right)^{-1}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots\right)^{-1}$
When we add a resistor in series, the equivalent resistance increases.
When we add a resistor in parallel, the equivalent resistance decreases.

[^0]: ${ }^{1}$ Anthropomorphism: Giving human characteristics or behaviors to non-human objects.

