

Flipping Physics Lecture Notes: Inductors vs. Resistors: Exploring the Fundamental Differences http://www.flippingphysics.com/inductors-resistors.html

It is important to understand the difference between resistance, resistivity, resistors, inductance, selfinductance, and inductors. $R = \frac{\Delta V}{T}$

- Resistance is an opposition to current. (concept)
 - The units for resistance are ohms, Ω . 0
 - The resistance of a circuit is often assumed to be zero. (self-resistance?) 0
 - A resistor is a circuit element with a specific resistance. (physical object) 0
 - "R" is the resistance of a resistor.
 - A resistor is made of a material with a material property called resistivity, p.
 - The units for resistivity are ohm meters, Ω •m.
 - A resistor can be added to a circuit to change the resistance of the circuit.
 - A resistor can be added to a circuit diagram to model the resistance of the circuit itself.
- *Inductance* is an opposition to changes in current. (concept)
 - The units for inductance are henrys, H. 0
 - The opposition of a circuit to the change in the current in that circuit is called self-0 inductance. (concept)
 - The self-inductance of a circuit is often assumed to be zero.
 - An *inductor* is a circuit element with a specific inductance. (physical object) 0
 - "L" is the inductance of an inductor.
 - A typical shape for an inductor is a small, ideal solenoid.
 - There is no material property called "inductivity" because • the inductance of an inductor is mostly caused by the shape, not the material, of the inductor. A magnetic material in its core can affect the inductance through its magnetic permeability, but not the material of the wire coil.
 - An inductor can be added to a circuit to change the inductance of the circuit.
 - An inductor can be added to a circuit diagram to model the self-inductance of the circuit itself.

