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Flipping Physics Lecture Notes: 
 

Moment of Inertia and 
Rotational Kinetic Energy Derivations 

 

Our current equation for kinetic energy is . 

 
According to our kinetic energy equation, when an object is rotating around its center of mass, but its center 
of mass is not moving, the object has zero velocity; therefore, the object has zero kinetic energy. Kinetic 
energy is the energy of motion. Hopefully you recognize that an object rotating around its center of mass is 
moving and therefore must have kinetic energy, it is just not described by the equation above. We need to 
look at the kinetic energy of all the individual pieces of the rotating object. 
 
The total kinetic energy of all the individual pieces of the rotating object is:  

This means the sum of all the kinetic energies of every piece that makes up the object. The letter “i” 
represents that the number goes from 1 to “i”, the total number of pieces which make up the object. We can 

substitute in the equation for kinetic energy:  

The vi represents the velocity of every piece which makes up the object. Notice this must be a tangential 
velocity, because the object is rotating and therefore every part of the object is moving in a circle. 
Remember the equation that relates tangential velocity to angular velocity:   

Therefore:  

Assuming the object is a rigid object with shape, the angular velocity of every piece of the object will be the 
same, therefore  
Notice the “r” in this equation is the distance each particle is from the axis of rotation, which is not the same 
for each piece. 

We can isolate in the equation:  

We define as the Moment of Inertia of the object and identify it with the symbol, capital I: 

 

We can substitute the object’s moment of inertia back into the total kinetic energy equation to get the total 

kinetic energy of a rotating object which is called Rotational Kinetic Energy:  

 
The original kinetic energy then needs to be more specifically defined as Translational Kinetic Energy. In 
other words, the kinetic energy associated with the motion of the center of mass of the object moving from 

one point in space to another point in space:  

 
To help understand what moment of inertia is, notice the moment of inertia takes the place of the inertial 
mass in the kinetic energy equation. That is why I like to think of moment of inertia as “rotational mass”. 
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Remember inertial mass is a measure of the tendency of an object to resist acceleration. The more mass 
something has, the more it resists acceleration. This means that moment of inertia or “rotational mass” is a 
measure of the tendency of an object to resist angular acceleration. The more moment of inertia or 
“rotational mass” something has, the more it resists angular acceleration. 
 
Two Eggs in an Egg Carton: A Moment of Inertia or “Rotational Mass” Example: 
For this example, we are going to assume the egg carton has a small 
enough mass relative to the mass of the two eggs to be negligible. 
 
Place two eggs in an egg carton, both near the middle like this:  
Because there are two objects in the system, the moment of inertia 
will be: 

 

Where m is the mass of each egg and r is the distance each egg is 
from the axis of rotation. 
 
When we hold the egg carton in the middle and rotate it, it is relatively easy to rotate the system. In other 
words, because the eggs are close to the axis of rotation, the moment of inertia is low, and it is relatively 
easy to cause the eggs to angularly accelerate. 
 
Now move the eggs so that they are on opposite ends of the egg 
carton like this:  
The distance each egg is from the axis of rotation has been 
increased such that, now when we hold the egg carton in the middle 
and rotate it, it is more difficult to rotate the system. In other words, 
because we have increased the distance the eggs are from the axis 
of rotation, we have increased the moment of inertia or “rotational 
mass”, and therefore it is more difficult to cause the eggs to angularly 
accelerate. 
 
Realize we have not changed the mass of the system; we have only changed the locations of the masses. 
Increasing the distance the eggs are from the axis of rotation increases the moment of inertia or “rotational 
mass” of the system which makes it more difficult to angularly accelerate; however, the inertial mass of the 
system remains the same. 
 
Lastly, notice how “r”, the distance from the axis of rotation of each particle, is squared in the moment of 
inertia equation. This means the distance each particle is from the axis of rotation of the system has a much 
larger influence over the moment of inertia than the mass of each particle. 
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Flipping Physics Lecture Notes: 
 

Introductory Moment of Inertia Example Problem 
 
Example: Three 20.0-gram masses are 9.4 cm from an axis of rotation and rotating at 152 revolutions per 
minute. What is the moment of inertia of the three-object system? The strings holding the masses are of 
negligible mass. 
 

 
 

 

 
All the masses and distances from the axis of rotation are the same: 

 

 

 

 

Notice the moment of inertia of the system is independent of angular velocity. 
This is the same as the mass of an object being independent of its velocity. 
 
We can also determine the rotational kinetic energy of the system: 
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Flipping Physics Lecture Notes: 
 

Eggs in a Carton Moment of Inertia Example Problem 
 
Example: Two equal mass eggs are placed at either end in an 
egg carton of negligible mass. The egg carton is initially 
rotated about its middle. If the egg carton is now rotated about 
one end, what is the final moment of inertia of the eggs 
relative to their initial moment of inertia? 
 
 
Two objects are in the system, so the moment of inertia 
equation has two expressions, one for each egg: 
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The final distances from the axis of rotation are:   r1f
≈ 0 & r

2f
≈ 2r

i
≈ 2r  

Therefore, the final moment of inertia is: 
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And we can substitute the initial moment of inertia in for   2mr 2 , therefore: 
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In other words, moving the axis of rotation from the middle of the egg carton to the end of the egg carton 
doubles the moment of inertia. That means it is twice as difficult to cause the two eggs to angularly 
accelerate around the axis of rotation. 
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Flipping Physics Lecture Notes: 
 

Moments of Inertia of Rigid Objects with Shape 
 

We are going to discuss six different 
equations for moments of inertia of rigid 
objects with constant density: 

1. Thin, hollow cylinder about its long 
cylindrical axis. 

2. Solid cylinder about its long 
cylindrical axis. 

3. Thin, hollow sphere about is center 
of mass. 

4. Solid sphere about its center of mass. 
5. Thin rod about its center of mass. 
6. Thin rod about one end. 

 
A “rigid” object will not easily change shape. 
Please do not miss the fact that the density of these objects has to be constant. 
 
In a typical calculus based physics class you would derive many of these moments of inertia, however, for 
this algebra based class, we will only discuss their relative moments of inertia. In my opinion it is not worth 
memorizing these equations, however, understanding why they have their relative values is very worthwhile. 
 
Let’s start with the last two: A thin rod about (a) its center of mass and (b) one end. First off realize a “thin” 
rod means the radius of the rod is very small relative to the length of the rod, so we consider the rod to 
essentially be one-dimensional. Both moments of inertia for the thin rod are a fraction times ML2. Where “M” 
is the mass of the rod and “L” is the length of the rod. 

The equation for the moment of inertia of a system of particles is: . 

The calculus version of moment of inertia of a rigid object with shape and constant density is:  

The moment of inertia of the thin rod about its center of mass is:  

Because some of the mass is farther from the axis of rotation when the rod is rotated about its end rather 
than about its center of mass and we are squaring the distance the pieces of the rigid object are from the 
axis of rotation in the moment of inertia equation, we would expect the moment of inertia about one end to 

be greater in value than about its center.© and , so it works out. 

 
The other four moments of inertia are a fraction times MR2. Let’s start with the thin, hollow cylinder about its 
long cylindrical axis. Again, the term “thin” here means the thickness of the hollow cylinder is very small 
relative to the radius of the cylinder, therefore we can consider the hollow cylinder to be essentially a two 
dimensional object where every piece of the thin, hollow cylinder is a distance R from the axis of rotation. 
That means every “r” value equals R, the radius of the hollow cylinder. Therefore the moment of inertia of a 

thin, hollow cylinder about its long cylindrical axis is MR2.  (note the “fraction” here is 1.) 

 

                                                   
© My apologies. The footnoted, 70-word sentence may be the longest I have ever written. 
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Because more of the mass of the solid cylinder is closer to the axis of rotation than for the thin, hollow 
cylinder, you would expect the fraction for the equation for the moment of inertia of a solid cylinder to be less 

than for a thin, hollow cylinder. and , so it works out. 

 
Notice neither of these two moments of inertia depend on the length of the cylinder. That means the 
equation for the moment of inertia of a solid disk is the same as for a solid cylinder. And the equation for the 
moment of inertia of a thin, hollow cylinder is the same as for a thin ring. 
 
Next let’s discuss the moment of inertia of a solid sphere about its center of mass. Compared to the solid 
cylinder, more of the solid sphere’s mass is concentrated near its axis of rotation. Therefore, we would 
expect the fraction for the equation for the moment of inertia of a solid sphere to be less than for a solid 

cylinder.  and , so it works out. 

 
Last is the moment of inertia of a thin, hollow sphere about its center of mass. Compared to the solid 
cylinder, a hollow sphere has a larger proportion of its mass located farther from the axis of rotation, so we 
would expect the fraction for the equation for the moment of inertia of a thin, hollow sphere about its center 
of mass to be more than for a solid cylinder. However, compared to the thin, hollow cylinder, a hollow 
sphere has a smaller proportion of its mass located farther from the axis of rotation, so we would expect the 
fraction for the equation for the moment of inertia of a thin, hollow sphere about its center of mass to be less 

than for a thin, hollow cylinder.  and , so it works out. 

 
Again, please do not memorize these equations. Instead, understand why they have their relative values. 
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Flipping Physics Lecture Notes: 
 

Torque Introduction 
 

Two general types of motion: 
- Translational Motion: The center of mass moves from one location to another location. 

o Caused by a net force. 
o Force is the ability to cause an acceleration of an object. 

- Rotational Motion: The object moves in circular motion about its center of mass. 
o Caused by a net torque 
o Torque is the ability of a force to cause an angular acceleration of an object. 

 
The equation for torque is  

• The symbol for torque is the lowercase Greek letter tau, !.	
• F is the force causing the torque.	
• The equation is sometimes given as 	
• is called the “moment arm” or “lever arm” and 	
• is the position vector from the axis of rotation to where the force is applied to the object.	
• θ is the angle between the direction of the force and the direction of .	
• Torque is a vector, which means it has both magnitude and direction.	

o We will talk about direction in detail in the next lesson.	
	
Everything you ever needed to know about torque, you already know, because you have opened many 
doors. I know that all seems a bit confusing, so let’s walk through some example problems involving a door. 
When you approach a door you find the handle and the handle is always located far from the hinge. That is 
because the hinge is the axis of rotation. The distance 
from the axis of rotation to the location the force is 
applied (the handle) is the magnitude of the variable “r”. 
 
Let’s start by assuming you are always pushing or 
pulling on the door at a 90 degree angle to the door: 

	
	

	
In this special case “r” times the force equals the torque. The handle is far from the axis of rotation so the 
torque associated with the force is large. When we push on the door with the same force near the axis of 
rotation, the “r” value is small and therefore, even with the same force, the torque is small, which means the 
ability to cause an angular acceleration of the door is small. 
 
What if we push on the door at an angle which is not 
90° like a 45° angle? Then, because of the shape of 
the sine curve, the torque associated with this force 
and “r” value will be reduced. In other words, 

because , an angle of 90° between “r” 

and the force, will produce the largest torque. 
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What if we push on the door at an angle of 0° or 180°?

 

This results in zero torque or zero ability to cause an 
angular acceleration of the door. 
 
 

 
But what is , the “moment arm” or “lever arm”? Going back to pushing on the door at an angle. 
Illustration. Notice “r” is the hypotenuse of a right triangle that has two sides which are the force and the 
moment arm. In this example, the moment arm has a smaller magnitude than “r”. The only way the moment 
arm and “r” have the same value is if the angle is 90°. In other words, a 90° angle results in the largest 
torque, assuming the force and “r” value are the same. Notice also that if the angle is 0°, then the moment 
arm equals zero. 
 
The units for torque are . 
 
Typically they are given as netwon meters instead of joules to differentiate torque from work and energy.	
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Flipping Physics Lecture Notes: 
 

An Introductory Torque Wrench Problem 
 

Example: To tighten a lag bolt, a 29 N force is applied at a 90° angle to a wrench 0.18 m from the center of 
a lag bolt. If the angle between the wrench and the force is changed to 50°, what magnitude force is 
necessary to tighten the bolt with the same torque? (assume both angles have 2 significant digits.) 
 

         
 
Knowns:  
 

 
 

 (This is the torque applied by the original force.) 

 

 

 
Part B) If a pipe is fitted to the wrench which increases the distance between the lag bolt and where the 
force is applied to 1.08 meters, what would the minimum magnitude force necessary be to cause the same 
torque as before? 

 

 
 
Minimum force means the angle needs to be 90° because . 
Any other force would result in a larger force necessary to produce the same torque. 
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Flipping Physics Lecture Notes: 
 

The Right Hand Rule for Torque 
 

The right hand rule for torque is used to find the direction of torque. 
• Do not be too cool for the right hand rule. Limber up!! 

 
1. Start with the fingers of your right hand at the axis of rotation. 
2. Point your fingers toward the force. 
3. Curl your fingers in the direction of the force. 
4. Stick out your right thumb. 
5. Your right thumb points in the direction of the torque. 

 
Six demonstrations: 

 
positive torque, out of the paper 

 
negative torque, into the paper 

 
negative torque, into the paper  

positive torque, out of the paper 

 
positive torque, out of the paper 

 

 
 

torque is zero, so no torque direction. 
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Flipping Physics Lecture Notes: 
 

Net Torque on a Door 
 

Example: Kate, Geneve, and Ryan all push on a door as shown 
in the figure. Assuming the hinge is the axis of rotation of the 
door, determine the net torque caused by these three forces. 
	

 

 

 
 

 

 

 

 
 
According to the Right Hand Rule, Geneve’s torque is negative and Ryan’s torque is positive. 
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Flipping Physics Lecture Notes: 
 

Rotational Form of Newton’s Second Law - Introduction 
 

First we need to review Newton’s Second Law of Motion:  
• Force and acceleration are both vectors. 
• Includes not just force but the net force, meaning the addition of all the forces acting on an object. 
• When you use this equation you have to identify: 

o what object(s) you are summing the forces on. 
o the direction in which you are summing the forces. 

 
This is the rotational form of Newton’s Second Law of Motion:  

• Note the similarities between the original second law and the rotational form. 
o Torque is the rotational form of force. 
o Moment of Inertia or Rotational Inertia is the rotational form of inertial mass. 
o Angular acceleration is the rotational form of linear acceleration. 

• Torque and angular acceleration are both vectors. 
• Includes not just torque but the net torque, meaning the addition of all the torques acting on an object. 
• When you use this equation you have to identify: 

o what object(s) you are summing the torques on. 
o the axis of rotation. 
o the positive torque direction. 

 
Remember: Torque is the ability of a force to cause an angular acceleration of an object. Notice how the 
rotational form of Newton’s Second Law of Motion shows exactly that. A net torque causes an angular 
acceleration. If you increase the net torque acting on an object without adjusting the moment of inertia or 
rotational inertia of the object, the angular acceleration of the object with increase. 
 
If you want to hear the equation in words, you can say the angular acceleration of an object produced by 
a net torque is directly proportional to the magnitude of the net torque, in the same direction as the net 
torque, and inversely proportional to the moment of inertia or rotational inertia of the object. 
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Flipping Physics Lecture Notes: 
 

Demonstrating Rotational Inertia (or Moment of Inertia) 
 
Have you ever struggled to describe Rotational Inertia to your students? Even worse, have you ever 
struggled to understand Rotational Inertia yourself. (I know I have. J) Did you know Rotational Inertia is 
the same as Moment of Inertia? Yeah, I’m with you there. I did not know the name had been changed 
until recently. However, I do think Rotational Inertia is a more logical phrase than Moment of Inertia. Well, 
if you would like some help with the concept of Rotational Inertia, then I highly suggest the Rotational 
Inertia Demonstrator from Arbor Scientific because it is an easy way to demonstrate the concept of 
rotational inertia. The demonstrator is composed of three pulleys of different sizes all centered around the 
same axle. Attached to the pulleys are four spokes on which four masses can be placed. The distance 
from the axle, or axis of rotation, of the four masses on the spokes can be adjusted. 
 

 
 
In order to understand rotational inertia, we should first review the equation for rotational inertia of a 
system of particles: 

 

The rotational inertia of a system of particles equals the sum of the quantity of the mass of each particle 
times the square of the distance each particle is from the axis of rotation. While the Rotational Inertia 
Demonstrator does not appear to be a system of particles, the equation for the rotational inertia of a 
system of particles helps us to understand how the rotational inertia of the demonstrator changes when 
we adjust the locations of the four adjustable masses. The closer the four adjustable masses are to the 
axle, or axis of rotation, the smaller the “r” value in the rotational inertia equation and the smaller the 
rotational inertia of the demonstrator. 
 
We also need to review the Rotational Form of Newton’s Second Law of Motion to better understand 
rotational inertia. The net torque acting on an object equals the rotational inertia of the object times the 
angular acceleration of the object. Please remember torque and angular acceleration are vectors. 

 (rotational) 
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Notice the similarities to the Translational Form of Newton’s Second Law of Motion. The net force acting 
on an object equals the inertial mass of the object times the linear acceleration of the object. Again, 
remember force and linear acceleration are vectors. 

 (translational) 
 
Force is the ability to cause a linear acceleration of an object. 
Torque is the ability of a force to cause an angular acceleration of an object. 
 
Torque is the rotational equivalent of force. 
Rotational inertia is the rotational equivalent of inertial mass. 
Angular acceleration is the rotational equivalent of linear acceleration. 
 
But, what does it mean that rotational inertia is the rotational equivalent of inertial mass? Inertial mass is 
the measurement of the resistance of an object to linear acceleration. Therefore, rotational inertia is the 
measurement of the resistance of an object to angular acceleration. In other words, the greater the 
rotational inertia of an object, the more that object will resist an angular acceleration. Referring back to 
the rotational inertia demonstrator, the farther the four adjustable masses are from the axis of rotation, the 
larger the “r” value in the equation for the rotational inertia of a system of particles, therefore the larger the 
rotational inertia of the demonstrator. The larger the rotational inertia of the demonstrator, the larger the 
resistance of the demonstrator to angular acceleration. In summary, the larger the distance the four 
adjustable masses are from the axle, the larger the rotational inertia, and therefore the larger the 
resistance of the demonstrator to angular acceleration. 
 
This is demonstrated below by hanging a 100-gram mass from the largest pulley in two simultaneous 
demonstrations. In the demonstration on the left, the four adjustable masses are close to the axis of 
rotation and therefore the rotational inertia of the system is smaller. In the demonstration on the right, the 
four adjustable masses are farther from the axis of rotation and therefore the rotational inertia of the 
system is larger. When both demonstrators are simultaneously released from rest, because the net 
torque caused by the 100-gram masses is approximately the same, the demonstrator with the larger 
rotational inertia on the right has a smaller angular acceleration. In other words, the demonstrator with the 
larger rotational inertia speeds up rotationally at a slower rate. Going back to the Rotational Form of 
Newton’s Second Law of Motion, because the net torque is almost the same, a larger rotational inertia 
results in a smaller angular acceleration:  
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Notice we are always keeping the four adjustable masses the same distance from the axle, or axis of 
rotation. This is to keep the center of mass of the system at the axis of rotation of the system. When the 
four masses are not equally spaced from the axis of rotation, then the center of mass of the system is 
offset from the axis of rotation and the force of gravity acting on the system causes a torque on the 
system. The force of gravity causing a torque on the system makes understanding the demonstration 
much more complicated. In the examples shown below, the demonstrator on the left with four masses 
equally spaced from the axle rotates at almost a constant angular velocity. The demonstrator on the right 
has one mass farther from the axis of rotation and therefore the whole system actually becomes a 
physical pendulum. The system oscillates back and forth in simple harmonic motion. While this is 
interesting, it does not provide an obvious way to learn about rotational inertia. In summary, it is much 
easier to learn about rotational inertia from the demonstrator if all four masses are equally spaced from 
the axis of rotation. 
 

 
 
Let’s look at another set of demonstrations below to learn about rotational inertia. As in the previous 
demonstration, on the right we have a 100-gram mass hanging from the largest pulley and all four 
adjustable masses far from the axis of rotation. On the left, all four adjustable masses are still far from the 
axis of rotation, however, the 100-gram mass is hanging from the smallest pulley instead. In other words, 
both rotational inertia demonstrators have the same rotational inertia and the force of gravity acting on the 
string is the same, however, the net torque acting on each demonstrator is different. Recall torque equals 
the “r” vector times the force causing the torque times the angle between the direction of the “r” vector 
and the direction of the force. The magnitude of the “r” vector is the distance from the axis of rotation to 
where the force is applied to the object: 
 

 
 
Because the 100-gram mass is hanging from the small pulley on the left and the large pulley on the right, 
the “r” vector for the small pulley is smaller and therefore the net torque acting on the demonstrator 
through the small pulley is less. Therefore, according to the Rotational Form of Newton’s Second Law of 
Motion, the angular acceleration of the demonstrator on the left is less than the angular acceleration of 
the demonstrator on the right. 
 

  τ = rF sinθ
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Our last set of demonstrations has both demonstrators with identical rotational inertias and masses 
hanging from the smallest pulleys. Also, both demonstrators have a 100-gram mass hanging over the left 
side of the pulley. However, the demonstrator on the right has a second mass, a 200-gram mass, hanging 
over the right side of the pulley. This means the demonstrator on the right has two different masses 
hanging off of the smallest pulley.  
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In order to determine what is going to happen, remember the Rotational Form of Newton’s Second Law of 
Motion includes net torque not just torque.  In this example, the net torque from the two 
masses on the demonstrator on the right actually has roughly the same magnitude as the net torque 
acting on the demonstrator on the left, however, the directions are opposite from one another.  
 
Again, both demonstrators have the same rotational inertia, are using the same pulley, and have a 100-
gram mass hanging over the left side of the pulley. The pulley on the right adds a 200-gram mass 
hanging over the right side of the pulley. For the demonstrator on the right, the 100-gram mass hanging 
over the left side of the pulley essentially cancels out 100-grams of the 200-gram mass hanging over the 
right side of the pulley. This effectively means the right demonstrator essentially has a 100-gram mass 
hanging over the right side of the pulley. Therefore, the net torques on both demonstrators have essential 
the same magnitude and opposite directions. Therefore, the angular accelerations of both demonstrators 
should have roughly the same magnitude and opposite directions. You can see that is true in the 
demonstration. 
 

 
 
But why do the two demonstrators have “roughly” the same magnitude angular accelerations? Adding the 
200-gram mass to the demonstrator on the right increases the total mass of the system. Because inertial 
mass is resistance to acceleration, increasing the total mass of the system actually decreases the angular 
acceleration of the system a little bit, even though the net torque should be roughly the same. Proving this 
requires drawing free body diagrams, summing the torques on the wheel, and summing the forces on 
each mass hanging, so I am not going to walk all the way thought that solution here. 
 
There are many more ways you can make adjustments to the rotational inertia demonstrator to better 
help understand rotational inertia. For example, ask yourself what would happen to the angular 
acceleration of the demonstrator if the only change we make to it is to increase the mass hanging from 
the demonstrator? Increasing the mass hanging from the demonstrator increases the net torque acting on 
the demonstrator. The rotational inertia remains the same. Therefore, according to the Rotational Form of 
Newton’s Second Law of Motion, , the angular acceleration of the demonstrator will increase. 
 

  
!τ∑ = I

!α

  
!τ∑ = I

!α
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What if the only change we make is to change the locations of the four adjustable masses from all being 
at their farthest extreme positions to having two of the adjustable masses near the axis of rotation and 
two adjustable masses far from the axis of rotation? Bringing two adjustable masses near the axis of 
rotation decreases the rotational inertia of the system and therefore, according to the Rotational Form of 
Newton’s Second Law of Motion, the angular acceleration of the demonstrator will increase. Notice, this 
will only work when the two close adjustable masses are opposite one another and the two far adjustable 
masses are also opposite one another. If this is not the case, the center of mass of the rotational inertia 
demonstrator will not be at the axle, or axis of rotation, which is a problem we addressed earlier. 
 
The pulley sizes of the rotational inertia demonstrator are provided by Arbor Scientific. They are 20.22 
mm for the small pulley, 28.65 mm for the medium pulley, and 38.52 mm for the large pulley. Given this 
information, we can even predict which way the rotational inertia demonstrator will rotate if we were to 
hang 100-grams over one side of the large pulley and 200 grams over the other side of the small pulley. 
Before releasing the demonstrator, the angular acceleration of the demonstrator is zero because it is at 
rest. Therefore the torque caused by the 100-gram mass will be 0.3852 meters times 0.100 kilograms  
times 9.81 m/s^2 times the sine of 90 degrees which equals roughly 0.38 N. 
 

 

 

 
The torque caused by the 200-gramm mass will be 0.2022 meters times 0.200 kilograms times 9.81 
m/s^2 times the sine of 90 degrees which equals roughly 0.40 N. 
 

 

 

 
Therefore, the net torque caused by both masses acting on the demonstrator before it starts to accelerate 
is the difference between these two torques because they act in opposite directions. 

 

 
Therefore, because the torque caused by the 200-gram mass is larger than the torque caused by the 
100-gramm mass, the rotational inertia demonstrator will rotate in the direction caused by the torque of 
the 200-gram mass. 
 
Please realize these torque calculations are only correct while the demonstrator is at rest. Once the 
demonstrator begins to accelerate, the force of gravity and the force of tension acting on the mass 
hanging are no longer the same and we would need to draw free body diagrams and sum the forces on 
each hanging mass. 
 
Thanks for reading and I hope you use the Rotational Inertia Demonstrator from Arbor Scientific to better 
understand rotational inertia! 

  
r = 38.52mm× 1m

1000mm
= 0.3852m & m =100g × 1kg

1000g
= 0.1kg

  
τ

100−g
= rF

g
sinθ = r mg( )sinθ = 0.3852( ) 0.1( ) 9.81( )sin 90( ) = 0.3778812 ≈ 0.38N

  
r = 20.22mm× 1m

1000mm
= 0.2022m & m = 200g × 1kg

1000g
= 0.2kg

  
τ

200−g
= rF

g
sinθ = r mg( )sinθ = 0.2022( ) 0.2( ) 9.81( )sin 90( ) = 0.3967164 ≈ 0.40N

   
!τ =∑ τ

200−g
−τ

100−g
= 0.3967164 - 0.3778812 = 0.0188352 ≈ 0.02N



0284 Lecture Notes - Introductory Rotational Form of Newton's Second Law Problem.docx page 1 of 1 

Flipping Physics Lecture Notes: 
 

Introductory Rotational Form of Newton's Second Law Problem 
 
Example: A uniform, solid disk that rotates about a frictionless axle at its center of mass is mounted on a 
wall so the plane of the disk is parallel to the wall. A string of negligible mass wraps around the disk and is 
pulled by a force of 11 N. If the radius of the disk is 0.18 m and the mass of the disk is 1.5 kg, what is the 
angular acceleration of the disk? The rotational inertia of a solid disk about its center of mass equals ½MR2. 
 
Knowns:  

 

 
Draw the Free Body Diagram and define the positive torque direction. à 
 
Sum the torques acting on the disk about its axis of rotation. 

 

 
Note: Because both FN and Fg act on the axis of rotation, they both have an r value of zero and therefore 
produce no torque about the axle. 
 

 

 

 

 

  Fa
=11N; R

disk
= 0.18m; M

disk
=1.5kg;α = ?

  
I

disk
= 1

2
MR2 = 1

2
1.5( ) 0.18( )2

= 0.0243kg ⋅m2

  

!τ∑ = !τ
FN
+ !τ

Fg
− !τ

Fa
= I
!α ⇒− !τ

Fa
= I
!α

   
⇒− !r

Fa

!
F

a
sinθ = −RF

a
sin 90( ) = Iα

  
⇒α = −

RF
a

I
= −

0.18( ) 11( )
0.0243

= −81.4815 ≈ −81
rad
s2
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Flipping Physics Lecture Notes: 
 

(1 of 2) Measuring the Rotational Inertia of a Bike Wheel 
 

We are going to measure the rotational inertia (or moment of inertia) of a bike wheel. 
In order to do this we are going to attach a known mass to a string, wrap the string 
around the bike wheel, and let the mass apply a torque the bike wheel to angularly 
accelerate the wheel. We need to assume the axle of the bike wheel is frictionless. 
 
FBD: FN on bike wheel; Fg on bike wheel; Fg on hanging mass; FT on bike wheel; FT 
on hanging mass. r for both Fg on bike wheel and FN on bike wheel are zero, so the 
torque caused by both of those forces is zero. Therefore, the only torque acting on 
the bike wheel is caused by the FT of the hanging mass. 
 
Sum the torques on only the wheel with the positive torque direction shown in the 
free body diagram: 

 
Sum the forces in the y-direction on just the hanging mass. Notice because of the way we have define 
positive torque that the positive y-direction is now down.

 

 

 

Which we can substitute back in to the rotational inertia equation: 

 

Because the string is connected to the hanging mass and the outside edge of 
the wheel, as the hanging mass goes down, the edge of the wheel travels the 
same linear distance or arc length. This means the acceleration in the y-
direction of the hanging mass is the same as the tangential acceleration of 
the rim of the wheel, therefore: 

  

 
Everything in the equation for the net force on the hanging mass is constant. 
This means the force of tension acting on the wheel is constant. In addition, 
the “r” vector of the hanging mass and the angle in the torque equation are all 
constant. This means the net torque acting on the wheel is constant. The 
rotational inertia of the wheel is also constant. Therefore, according to the 
rotational form of Newton’s second law of motion, the angular acceleration of 
the wheel is constant and we can use the uniformly angularly accelerated 
motion equations. 
 

 

 
  

  
τ

wheel
AoR@axle

∑ = +τ
F

T

= Iα ⇒ rF
T

sinθ = RF
T

sin 90( ) = Iα ⇒ I =
RF

T

α

 
F

y
mass hanging

∑ = F
g
− F

T
= ma

y
⇒ mg − F

T
= ma

y
⇒ F

T
= mg − ma

y
= m g −a

y( )

 
⇒ I =

RF
T

α
=

Rm g −a
y( )

α

 
a

y
= a

t
= rα = Rα ⇒ I =

Rm g − Rα( )
α

  
Δθ =ω

i
Δt + 1

2
αΔt2 = 0( )Δt + 1

2
αΔt2 ⇒ 2Δθ =αΔt2 ⇒α = 2Δθ

Δt2
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Therefore, to solve for the moment of inertia of the bike wheel, we need to know: 
• Wheel radius 
• Hanging mass 
• Acceleration due to gravity of the planet we are on 
• Change in time while the hanging mass accelerates downward 
• Change in angular position of the bike wheel associated with the same change in time 

 

Knowns:  

 

 
 
 

  
r

wheel
= 0.332m; m

hanging
= 0.205kg; g

Earth
= 9.81

m2

s
; Δt =1.28sec;

  
Δθ =185°× 2π rad

360°
= 3.228859rad & α = 2Δθ

Δt2
=

2( ) 3.228859( )
1.282

= 3.941478
rad
s2

  
I =

Rm g − Rα( )
α

=
0.332( ) 0.205( ) 9.81− 0.332( ) 3.941478( )( )

3.941478
= 0.146800 ≈ 0.147kg ⋅m2
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Flipping Physics Lecture Notes: 
 

(2 of 2) Measuring the Rotational Inertia of a Bike Wheel 
 

 
This is a continuation of “(1 of 2) Measuring the Rotational Inertia of a Bike 
Wheel.” The following is a very rough summary of what was done in that lecture. 
Please watch that lecture before embarking on this video’s learning adventure. 
https://www.flippingphysics.com/rotational-inertia-bike-wheel-1.html 
 

Knowns:  

 

 

 

 
Does this answer make sense? Recall that, about their center of masses 
and long cylindrical axes, the rotational inertias of spheres and cylinders 
were always a fraction times the mass of the object times the radius of 
the object squared. For example, about their long, cylindrical axes: 

 

I would estimate that this bike tire is roughly halfway between a solid disc 
and a thin hoop. We could estimate this rotational inertia as

. Let’s test that: 

 

 

 
Notice it would be incorrect to sum the torques on the whole system at once (wheel and hanging mass): 

 

 
This is incorrect because the hanging mass does not have a rotational inertia about the axis of rotation 
of the bicycle wheel. 
 
 
  

  
α = 3.941478

rad
s2

; r
wheel

= 0.332m; m
hanging

= 0.205kg

  
τ

on wheel
AoR@axle

∑ = +τ
F

T

= Iα ⇒ I =
RF

T

α

 
F

y
mass hanging

∑ = F
g
− F

T
= ma

y
⇒ F

T
= m g −a
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⇒ I =

Rm g − Rα( )
α

= 0.146800 ≈ 0.147kg ⋅m2

  
I

thin hoop
= MR2 & I

soliddisk
= 1

2
MR2

  
I

bike wheel
≈ 3

4
MR2

  
m

wheel
=1.96kg; R

wheel
= 0.332m; I

wheel
= XM

wheel
R
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2 ⇒ X =

I
wheel

M
wheel

R
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2

  

⇒ X = 0.146800

1.96( ) 0.332( )2
= 0.679505⇒ I

bike wheel
≈ 0.680MR2 ≈ 3

4
MR2

   
τ

on all
AoR@axle

∑ = + !τ
F
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− !τ
F
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+ !τ
F
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F
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Part B) Determine the force of tension in the string while the wheel is angularly accelerating. 
 
There are two equations we could use to solve for this now: 

 

 

 
Notice what happens before the wheel is allowed to angularly accelerate, in other words, while the wheel 
is at rest. Let’s sum the forces on the hanging mass. 

 

 
The force of tension equals the force of gravity, 2.01N, before the wheel begins to angularly accelerate 
and then decreases to 1.74 N while the wheel is angularly accelerating. 
 

 Predicted Measured 
at rest   

accelerating   
difference   

 
 

  
I =

RF
T

α
⇒ F

T
= Iα

R
=

0.146800( ) 3.941478( )
0.332

=1.742793 ≈1.74N

  
F

T
= m g − Rα( ) = 0.205( ) 9.81− 0.332( ) 3.941478( )( ) =1.742793 ≈1.74N

  
F

y∑ = F
g
− F

T
= ma

y
= m 0( ) = 0⇒ F

T
= F

g
= mg = 0.205( ) 9.81( ) = 2.01105 ≈ 2.01N

  FT
≈ 2.01N   FT

≈1.9N

  FT
≈1.74N   FT

≈1.6N

  ΔF
T
≈ 0.3N   ΔF

T
≈ 0.3N
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Flipping Physics Lecture Notes: 
 

Rotational Equilibrium Introduction (and Static Equilibrium too!) 
 
Translational Equilibrium: 

•  
o The object is either  

§ at rest or  
§ moving at a constant velocity. 

• Note: The mass of an object cannot be zero. 
o Remember to identify 

§ object(s) you are summing the forces on and 
§ the direction you are summing the forces in. 

 
Rotational Equilibrium: 

•  
o The object is either 

§ at rest (not rotating) or 
§ moving at a constant angular velocity. 

• Note: The rotational inertia of an object cannot be zero. 
o Remember to identify 

§ object(s) you are summing the torques on, 
§ the axis of rotation, and 
§ the direction you are summing the torques in. 

o Realize the rotational inertia of an object cannot be zero. 
 
Static Equilibrium: 

• The object is at rest (and therefore not rotating). 
• The object is in both translational and rotational equilibrium. 
• The net torque equals zero about any axis of rotation. 

 

Translational Equilibrium: 

 

• At Rest or 
• Constant Velocity 

Identify: Object and Direction 

Rotational Equilibrium: 

 

• At Rest (not rotating) or 
• Constant Angular Velocity 

Identify: Object, Direction, and 
Axis of Rotation 

Static Equilibrium: 

 &  

• At rest and not rotating 

•  about any Axis of Rotation! 

 

   
!
F = 0 = m

!
a⇒ !a = 0∑

   
!τ = 0 = I

!α∑ ⇒ !α = 0

   
!
F = 0 = m

!
a⇒ !a = 0∑    

!τ = 0 = I
!α∑ ⇒ !α = 0

   
!
F = 0 = m

!
a⇒ !a = 0∑    

!τ = 0 = I
!α∑ ⇒ !α = 0

!τ = 0∑
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Flipping Physics Lecture Notes: 
 

Introductory Rotational Equilibrium Problem 
 

Example: A uniform 0.093 kg meterstick is supported 
at the 15 cm and 92 cm marks. When a 0.250 kg 
object is placed at the 6.0 cm mark, what are the 
magnitudes of the forces supporting the meterstick? 

 
 
The system is at rest, so it is in both translational and rotational equilibrium. Therefore, the net force 
equals zero and the net torque about any axis of rotation equals zero. This special case is called static 
equilibrium. 
 
Sum the forces in the y-direction on the meterstick. 

 

 

Both force normals are unknowns, so we need to put this equation in our equation holster and sum the 
torques on the meterstick about force normal #1. Note: Counterclockwise or out of the page is positive. 

 
Torque directions: 

• The Force of gravity of the object would cause the meterstick to rotate counterclockwise or out of 
the page, so the torque caused by force of gravity of the object is positive. 

• Force normal #1 acts right at the axis of rotation, therefore, the “r” value for force normal #1 is 
zero, and the torque caused by force normal #1 is zero and has no direction. 

• The force of gravity of the stick and force of gravity 2 would both cause the meterstick to rotate 
clockwise or into the page, so the torques caused by force of gravity of the stick and force of 
gravity #2 are both negative. 

 

 

 

 

 

 
And, going back to our equation holster: 

 

  

m
s
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0289 Lecture Notes - Placing the Fulcrum on a Seesaw.docx page 1 of 2 

Flipping Physics Lecture Notes: 
 

Placing the Fulcrum on a Seesaw 
 
Example: A 200.0 g mass is placed at the 20.0 cm 
mark on a uniform 93 g meterstick. A 100.0 g mass is 
placed at the 90.0 cm mark. Where on the meterstick 
should the fulcrum be placed to balance the system? 
 

 
 
The system is at rest, so it is in both translational and rotational equilibrium. Therefore, the net force 
equals zero and the net torque about any axis of rotation equals zero. This special case is called static 
equilibrium. 
 
Sum the forces in the y-direction on the meterstick.  
 

 

 

 

 
Now we sum the torques on the meterstick with the axis of rotation at the left end. Assume 
counterclockwise, or out of the page, is positive. 

 
 Torque directions: 

• The force normal would cause the meterstick to 
rotate counterclockwise or out of the page, so 
the torque caused by force normal is positive. 

• The force of gravity 2, force of gravity of the stick and force of gravity 1 would each cause the 
meterstick to rotate clockwise or into the page, so these three torques are each negative. 
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Alternate solution without using Newton’s Second Law: 
 
Now we sum the torques on the meterstick with the axis of rotation at the Force Normal. Assume 
counterclockwise or out of the page is positive. 
 

 
 

 
 Torque directions: 

• Force of gravity 2 would cause the meterstick to rotate counterclockwise or out of the page, so 
the torque caused by force of gravity 2 is positive. 

• The force normal acts right at the axis of rotation, therefore, the “r” value for the force normal is 
zero, and the torque caused by the force normal is zero and has no direction. 

• The force of gravity of the stick and force of gravity 2 would both cause the meterstick to rotate 
clockwise or into the page, so the torques caused by force of gravity of the stick and force of 
gravity #2 are both negative. 

•  

 

 
 

 
(everybody brought g, the acceleration to gravity, to the party!) 
 
Define x as the distance from the left end of the meterstick to the axis of rotation. 
 

 
 

 

 
 

 

 
 
 

 

τ
meterstick
AoR #2@ fulcrum

∑ = τ
2
+τ

N
−τ

s
−τ

1
= Iα = I 0( ) = 0

⇒ r
2
F
g2
sinθ

2
− r

s
F
gs
sinθ

s
− r

1
F
g1
sinθ

1
= 0

  
θ

2
= θ

s
= θ

1
= 90° &sin 90°( )=1

  ⇒ r
2
m

2
g − r

s
m

s
g − r

1
m

1
g = 0⇒ r

2
m

2
− r

s
m

s
− r

1
m

1
= 0

  x = 20+ r
2
⇒ r

2
= x − 20 & 50 = x + r

s
⇒ r

s
= 50− x & 90 = x + r

1
⇒ r

1
= 90− x

  
r

2
m

2
− r

s
m

s
− r

1
m

1
= 0⇒ x − 20( ) 200( )− 50− x( ) 93( )− 90− x( ) 100( ) = 0

  ⇒ 200x − 4000− 4650+ 93x − 9000+100x = 0
  ⇒ 200x + 93x +100x − 4000− 4650− 9000 = 0

  
⇒ 200+ 93+100( )x − 17650( ) = 0⇒ 393x =17650

⇒ x = 17650g icm
393g

= 44.911cm ≈ 45cm
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Flipping Physics Lecture Notes: 
 

Painter on a Scaffold – Don’t Fall Off!! 
 
Example: What is the closest to the end of a 93 g uniform meterstick you can place a 200.0 g object and 
have the system stay balanced? The meterstick is supported at the 20.0 cm and 80.0 cm marks. 

 

 
 
The system is at rest, so it is in both translational and rotational equilibrium. Therefore, the net force 
equals zero and the net torque about any axis of rotation equals zero. This special case is called static 
equilibrium. Let’s sum the torques on the meterstick about the 20.0 cm mark which is location of one of 
the supports, Force Normal #1. Assume counterclockwise or out of the page is positive. 

 
 

Torque directions: 
• The Force of gravity of the object would cause the meterstick to rotate counterclockwise or out of 

the page, so the torque caused by force of gravity of the object is positive. 
• Force normal #1 acts right at the axis of rotation, therefore, the “r” value for force normal #1 is 

zero, and the torque caused by force normal #1 is zero and has no direction. 
• The force of gravity of the stick and force of gravity 2 would both cause the meterstick to rotate 

clockwise or into the page, so the torques caused by force of gravity of the stick and force of 
gravity #2 are both negative. 

 
As we move the object closer to the left end of the meterstick, the magnitude of force normal #2 
decreases. When force normal #2 is reduced to zero, the object has reached it closest point to the left 
end of the meterstick, any farther left and the system would unbalance. Therefore, in this problem, force 
normal #2 is zero and the torque caused by force normal #2 is also zero. 

 

 
(everybody brought g, the acceleration to gravity, to the party!) 

 

Note:
  

 
  

m
s
= 93g; m

o
= 200.0g; supports at 20.0cm and 80.0 cm; x = ?

  
τ

AoR @
20.0cm

= τ
o
+τ

1
−τ

s
+τ

2∑ = Iα = I 0( ) = 0⇒τ
o
−τ

s
= 0⇒τ

o
= τ

s

⇒ r
o
F
g
o

sinθ
o
= r

s
F
g
s

sinθ
s

⇒ r
o
m

o
g sin 90( ) = r

s
m

s
g sin 90( )& θ

o
= θ

s
= 90° & sin 90°( ) =1

  

⇒ r
o
m

o
= r

s
m

s
⇒ r

o
=

r
s
m

s

m
o

=
30( ) 93( )

200( ) =13.95cm

50 = 20+ r
s
⇒ r

s
= 50− 20 = 30cm

20 = x + r
o
⇒ x = 20− r

o
= 20−13.95 = 6.05 ≈ 6.0cm

Answer: 6.0cm from the end of the meterstick
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Flipping Physics Lecture Notes: 

 

Graphing the Rotational Inertia of an Irregular Shape 

 

We have discussed the equations for the rotational inertia of common 

shapes. See: Moments of Inertia of Rigid Objects with Shape - 

https://www.flippingphysics.com/moment-of-inertia-rigid-objects.html 

However, we should also know how to measure the rotational inertia of 

irregular shapes. The Rotational Inertia Demonstrator from Arbor 

Scientific is a pulley; however, it does not fit any of the standard 

shapes. Our goal is to create a graph where the slope of the best-fit 

line is the rotational inertia of the rotational inertia demonstrator. Let’s 

start with free body diagrams. 

 

We can sum the torques on the pulley with an axis of rotation and the 

center of the pulley and define counterclockwise, or out of the board, 

as positive. Because they both act on the axis of rotation, the force 

normal and force of gravity which act on the pulley cause zero torque 

on the pulley. The torque caused by the force of tension on the pulley 

causes the pulley to rotate in the positive direction. 

 

 
 

Compare this equation to the slope intercept form of a line equation: 

 
 

The pulley has three different radii:  

 

The force of tension can be measured using a force sensor as a part of the hanging mass. Because the 

string has the same force of tension on both ends, the force of tension we measure on the hanging mass 

is the same as the force of tension which acts on the pulley. 

 

The angular acceleration of the pulley needs to be measured using a uniformly angularly accelerated 

motion equation:  

 

Therefore we need change in time, angular displacement, and zero initial angular velocity. 

 

Here is a sample calculation for the angular acceleration of the first trial: 

 
 

 

!τ
pulley
AoR@ pulley center

∑ = !τ
FT
= I
!α ⇒ rF

T
sinθ = Iα ⇒ RF

T
sin 90( ) = Iα ⇒ RF

T
= Iα

y = slope( )x + b⇒ y = RF
T
; slope = I; x =α; b = 0

R
1
= 0.0202m; R

2
= 0.0286m; R

3
= 0.0385m

Δθ =ω
i
Δt + 1

2
αΔt2 = 1

2
αΔt2 ⇒α = 2Δθ

Δt2

Δt = 55frames × 1sec
60frames

= 0.916sec; Δθ=2rev × 2π rad
1rev

= 4π rad;ω
i
= 0

α = 2Δθ
Δt2

=
2( ) 4π( )
0.916( )2

= 29.910 rad
s2
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The best fit line equation y = 0.00067x means  which means, because , 

the rotational inertia of the Rotational Inertia Demonstrator is 0.00067 kg·m2. 

 

Confirming the units:  

RF
T
= 0.00067α RF

T
= Iα

RF
T
= Iα ⇒ I =

RF
T

α
⇒ m ⋅N

rad
s2

= m ⋅ kg ⋅m
s2

⎛
⎝⎜

⎞
⎠⎟

s2

rad

⎛

⎝⎜
⎞

⎠⎟
= kg ⋅m2
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Flipping Physics Lecture Notes: 
 

How the Force of Tension on a Pulley 
Changes with Angular Acceleration 

 
Previously we determined the rotational inertia of the Rotational Inertia Demonstrator from Arbor 
Scientific. In order to do so, we measured the force of tension acting on the mass hanging which has the 
same magnitude as the force of tension acting on the pulley. Let’s take a look at how the force of tension 
changes depending on the angular acceleration of the pulley. We need to start, of course, with free body 
diagrams. Remember we defined counterclockwise, or out of the board, as the positive torque direction. 
 
Here is the graph for the measured force of tension as a function of time for the first trial: 

 
The hanging mass is released just before 1.00 seconds. The acceleration of the system before that is 
zero because the system is at rest. Therefore: 

 
 
After the hanging mass is released, the force of tension changes because the acceleration of the system 
is no longer zero: 

 
Be careful of direction here. Remember, we defined counterclockwise or out of the board as positive, 
therefore, the direction the hanging mass is moving is the positive direction. This is why the force of 
gravity and acceleration of the hanging mass are both positive when we sum the forces. The way we 
determine the linear acceleration of the hanging mass is by using the tangential acceleration equation. 

 

 
This predicted value compares quite well to our average force of tension measurement of 0.955 N. 

F
ymass

= F
g
− F

T
= ma

y∑ = m 0( ) = 0⇒ F
T
= F

g
= mg = 0.103( ) 9.81( ) =1.01043 ≈1.01N

F
ymass

= F
g
− F

T
= ma

y∑ ⇒ F
T
= F

g
−ma

y
= mg −ma

y
= m g −a

y( )

a
y
= a

t
= rα = Rα

⇒ F
T
= m g − Rα( ) = 0.103( ) 9.81− 0.0202( ) 29.910( )( ) = 0.948199 ≈ 0.948N
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Flipping Physics Lecture Notes: 
 

Using Integrals to Derive Rotational Inertia 
of a Long, Thin Rod with Demonstration 

 

The equation for rotational inertia of a rigid object with shape is:  
 
We are going to determine the rotational inertia of a long, thin, uniform density rod. For that we need to 
use linear mass density, λ. 

 
o is the total mass of the rod 
o  is the total length of the rod 
o  is the linear mass density of the rod, which is 

constant in this “uniform” rod.  
 
We can solve for the rotational inertia of the rod about its center of mass. 

 

 
 
Moving the axis of rotation to the left end of the rod only changes the limits 
of the integral: 

 
 
 
But now, we want to test our physics. In order to do so, we have the 
Rotational Inertia Demonstrator (RID) from Arbor Scientific. It is a pulley 
with three different pulley sizes and four long, thin, uniform density spokes 
which radiate from its center. Previously we measured the rotational inertia 
of the central pulley part which equals 0.00067 kg·m2. Now we are going to 
use what we just learned to determine what the rotational inertia of the 
whole RID is: 

 
 
Therefore, we need to determine the rotational inertia of a single spoke of 
the RID. To do this, we are going to use the same integral as before, and 
change the limits.  
 

I = r 2dm∫

λ = M

L
= dm

dx
⇒dm = λdx⇒dm = M

L
dx

M

 L
λ

I
y
= r 2dm∫ = r 2

M

L
dx = m

L∫ x2dx

−L
2

L

2

∫ = M

L

x3

3

⎡

⎣
⎢

⎤

⎦
⎥
−L
2

L

2

⇒ I
y
= M

L

L
2

⎛
⎝⎜

⎞
⎠⎟

3

3
−

− L
2

⎛
⎝⎜

⎞
⎠⎟

3

3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= M
L

L3

24
+ L3

24

⎡

⎣
⎢

⎤

⎦
⎥ =

M
L
2L3

24

⎡

⎣
⎢

⎤

⎦
⎥ =

1
12

ML2

I
end

= M

L
x2dx

0

L

∫ ⇒ M

L

x3

3

⎡

⎣
⎢

⎤

⎦
⎥
0

L

= M

L

L3

3
− 0

3

3

⎡

⎣
⎢

⎤

⎦
⎥ =
1
3
ML2

I
RID

= I
pulley

+ 4I
spoke
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The length of one spoke is 30.5 cm and the end of the 
spoke starts 3.05 cm from the axis of rotation. Therefore 

the initial point is 0.1L:  

And the final point is 1.1 L:  
 

 

 
 

Knowns:  
 

 

 
 
And we can test this. Previously we solved for the rotational inertia of an object in terms of the pulley 
radius, angular acceleration, and the force of tension acting on the pulley. See: “Graphing the Rotational 
Inertia of an Irregular Shape”. https://www.flippingphysics.com/rotational-inertia-irregular-shape.html 
 

 

 

 

 
 
 
 

x
i
= 3.05
30.5

L = 0.1L

x
f
= 3.05+ 30.5

30.5
L =1.1L

I
spoke

= M

L
x2dx

0.1L

1.1L

∫ ⇒ M

L

x3

3

⎡

⎣
⎢

⎤

⎦
⎥
0.1L

1.1L

= M

L

1.1L( )3
3

−
0.1L( )3
3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= M

3L
1.331L3 − 0.001L3⎡⎣ ⎤⎦

⇒ I
spoke

= M

3L
1.33L3⎡⎣ ⎤⎦ = 0.443ML2 ≈ 0.443ML2

M = 0.0742kg; L = 0.305m

⇒ I
RID

= I
pulley

+ 4 0.443ML2( ) = 0.00067+ 4( ) 0.443( ) 0.0742( ) 0.305( )2 = 0.01292685
⇒ I

RID
≈ 0.0129kg ⋅m2

Δt =133frames × 1sec
60frames

= 2.216sec; Δθ = 2rev × 2π rad
1rev

= 4π rad; ω
i
= 0

α = 2Δθ
Δt2

=
2( ) 4π( )
2.2216( )2

= 5.11492 rad
s2
; R

pulley
= 0.0286m; F

Tavg
= 2.452N

I =
R

pulley
F
T

α
=
0.0286( ) 2.452( )
5.11492

= 0.013710 ≈ 0.0137kg ⋅m2

E
r
= O − A

A
×100 = 0.13710− 0.01292685

0.01292685
×100 = 6.06075 ≈ 6.06%



0444 Lecture Notes - Parallel Axis Theorem Example.docx page 1 of 1 

Flipping Physics Lecture Notes:  
 

Parallel-Axis Theorem Example 
http://www.flippingphysics.com/parallel-axis-example.html 

 
We have already derived the Parallel-Axis Theorem:1 

 
 
We have already derived the equations for the rotational inertia of 
a uniform, long, thin rod about an axis which is perpendicular to 
the rod and goes through both its center of mass and its end: 

 
 
And we can use the parallel-axis theorem:  

 

 
The Physics Works!! 
 

 
1 http://www.flippingphysics.com/parallel-axis-theorem.html 
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Flipping Physics Lecture Notes: 
 

2 Masses on a Pulley - Torque Demonstration 
 

Example: 0.100 kg and 0.200 kg masses hang from either side of a frictionless pulley 
with a rotational inertia of 0.0137 kg·m2 and radius of 0.0385 m. (a) What is the 
angular acceleration of the pulley? (b) What is the force of tension in each string? 
 
Knowns: 

 
 
Start with free body diagrams of the forces acting on the two masses and the pulley. 
 
Note: If the pulley had no friction and no mass, the two forces of tension on either 
side of the pulley would be the same. In this example the pulley has mass and 
therefore rotational inertia, therefore, the forces of tension in the strings on either 
side of the pulley are not equal. 
 
Let’s start by summing the torques on the pulley with its axle as the axis of rotation. 
Because mass 2 is greater than mass 1, mass 2 should apply a larger torque on the 
pulley and cause the pulley to rotate in the clockwise, or into the board, direction. 
Therefore, let’s define clockwise, or into the board, as positive. Notice that, because 
they both act on the axis of rotation, neither the force normal nor the force of gravity 
acting on the pulley will cause a torque on the pulley. 
 

  

 (put in equation 
holster!) 
We do not know either force of tension so we cannot currently solve for angular acceleration. 
 
Sum the forces on mass 1: 

(put in equation holster!) 
 
Sum the forces on mass 2: 

(put in equation holster!) 
Notice force of tension 2 may be up, however, according to the positive direction we defined, force of 
tension 2 is acting in the negative direction! 
 
Combine all three equations!!! 

 
 

 

Notice we can relate the linear accelerations to angular acceleration:  

 

m
1
= 0.100kg;m

2
= 0.200kg; I = 0.0137kg ⋅m2; R = 0.0385m;α = ?

!τ
pulley
AoR@ Axle
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2
− !τ

1
= I
!α ⇒ r

2
F
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sinθ

2
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1
F
T1
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1
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F
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a
2
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Rα( )− R m

1
g +m

1
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2
g −m

2
a
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1
g +m
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a
1( )



0296 Lecture Notes - 2 Masses on a Pulley - Torque Demonstration.docx page 2 of 2 

 
 
 

 
 
Compare to the measured angular acceleration: 

 

 

 
 
Now let’s find the tensions: 

 

 
 
Now, please notice that those two forces of tension are not equal in magnitude. Recall that is because our 
pulley has mass and therefore has a rotational inertia and therefore requires a net torque to angularly 
accelerated it. Therefore, in order to cause that net torque on the pulley, force of tension 1 and force of 
tension 2 cannot have the same magnitude. But if the pulley had negligible mass and therefore negligible 
rotational inertia, the equation we got from summing the net torques would actually show that the two 
forces of tension acting on the pulley would be the same. 

 
 
I also want to point out two ways which students try to use to solve this problem which are both incorrect.  
 

1) Sum the torques on the whole system all at once with the axis of rotation at the axle of the pulley. 
But realize, the rotational inertia and angular acceleration on the right hand side of the equation 
would then refer to everything in the system, including the two hanging masses. And hopefully 
you recognize that the hanging masses do not have rotational inertia nor do they have angular 
acceleration. So this equation is incorrect. 

 
 

2) Sum the forces on the entire system in the positive direction. This time it is because the mass 
times acceleration on the right hand side of the equation would be for the entire system. Now, I 
do understand that the rim of the pulley does have the same magnitude tangential acceleration as 
the linear accelerations of the two masses, however, the pulley itself does not have a tangential 
acceleration because tangential acceleration depends on radius. The larger the radius the larger 
the tangential acceleration of whatever specific point on the pulley you are referring to. So, this 
equation is also incorrect. 

 

⇒ Iα +m
2
R2α +m

1
R2α = m

2
gR −m

1
gR⇒α I +m

2
R2 +m

1
R2( ) = gR m

2
−m

1( )
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gR m

2
−m

1( )
I +m

2
R2 +m

1
R2

=
gR m

2
−m

1( )
I + R2 m

2
+m

1( ) =
9.81( ) 0.0385( ) 0.2− 0.1( )

0.0137+ 0.0385( )2 0.2+ 0.1( )
= 2.67016 ≈ 2.67 rad

s2

ω
i
= 0; Δθ = 2rev × 2π rad

1rev
= 4π rad; Δt =193frames × 1sec

60frames
= 3.216sec;α = ?

Δθ =ω
i
Δt + 1

2
αΔt2 = 1

2
αΔt2 ⇒α = 2Δθ

Δt2
=
2( ) 4π( )
3.216( )2

= 2.4290 ≈ 2.43 rad
s2

E
r
= O − A

A
×100 = 2.4290− 2.67016

2.67016
×100 = −9.0315 ≈ −9.03%

F
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1
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1
a
1
= m

1
g + Rα( ) = 0.1( ) 9.81+ 0.0385( ) 2.67016( )( ) = 0.991280 ≈ 0.991N

F
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2
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2
g − Rα( ) = 0.2( ) 9.81− 0.0385( ) 2.67016( )( ) =1.94144 ≈1.94N

RF
T2
− RF

T1
= Iα = 0( )α = 0⇒ RF

T2
= RF

T1
⇒ F

T2
= F

T1

!τ
everything
AoR@ Axle

∑ = !τ
Fg2

− !τ
FT2

+ !τ
FT2

− !τ
FT1

+ !τ
FT1

− !τ
Fg1

= Iα

!
F
everything
+ direction

∑ =
!
F
g2
−
!
F
T2
+
!
F
T2
−
!
F
T1
+
!
F
T1
−
!
F
g1
= ma& a

t
= rα



0297 Lecture Notes - 2 Masses on a Pulley - Conservation of Energy Demonstration.docx page 1 of 2 

Flipping Physics Lecture Notes: 
 

2 Masses on a Pulley 
Conservation of Energy Demonstration 

 
Example: Mass 1 and mass 2 hang from either side of a frictionless pulley with rotational 
inertia, I, and radius, R. What is the angular acceleration of the pulley? 

Assume the system starts at rest and . 
 

Knowns:  
 
There is neither a force applied or a force of friction which is adding or removing 
energy from the system, therefore, mechanical energy is conserved. Define the initial 
point as where the objects are when they are at rest and the final point as where the 
objects are after mass 1 has moved up a distance y and mass 2 has moved down 
the same distance y. Set the zero line at the initial point. 
 

 
Initially the only type of mechanical energy is gravitational potential energy of mass 
2. Finally, mass 1 has gravitational potential energy, both masses have translational 
kinetic energy, and the pulley has rotational kinetic energy. Note: The gravitational 
potential energy of the pulley is the same initially and finally, therefore it would have 
the same value on either side of the equal sign and would cancel out. That is why we 
have not included it. 
 
Substituting in mechanical energy equations: 

 

  
 
Because they are attached by the string, the velocities of both masses are the same as the tangential 

velocity of the rim of the pulley:  (and multiply through by 2) 

 

 

 
Again, because they are attached by the string, both masses go through the same linear displacement, y,  

which is the same as the arc length traveled by the rim of the pulley:  
 
And the torque on the pulley will be constant so the pulley will experience constant angular acceleration, 
so we can use one of the uniformly angularly accelerated motion equations: 
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 And then we can substitute in the equation we 
derived for the square of the final angular velocity of the pulley. 

 
 
This matches our answer from when we previously did this problem using Newton’s Second Law, both 
the translation and rotational forms: https://www.flippingphysics.com/2-mass-pulley-torque.html 
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Flipping Physics Lecture Notes: 
 

Torque - Mass on Plank with String 
 

Example: A 0.300 kg mass rests on a 0.395 m long, 0.764 kg, uniform wooden 
plank supported by a string as shown in the figure. If the mass is 0.274 m from 
the wall and the angle between the string and the plank is 32.1°, (a) What is the 
force of tension in the string? and (b) What is the normal force from the wall? 
 
The wood plank is at rest and not rotating, therefore it is in static equilibrium, 
therefore the net force acting on the plank equals zero and the net torque 
acting on the plank equals zero about any axis of rotation. The first thing we 
need to do is to draw the free body diagram of the forces acting on the plank. 
 
Now that we have the free body diagram, we can sum the torques on the plank 
with an axis of rotation about the left end of the plank. Notice both the force 
normal and the force of static friction act at the axis of rotation and therefore 
cause no torque on the plank. (This is why we chose the left end as our axis of 
rotation. Notice how two out of our three unknown forces cause no torque with 
that axis of rotation. Helpful, eh?) We can make out counterclockwise, or out of 
the board, positive, therefore the torque caused by the force of tension is 
positive and the torques caused by the force of gravity of the plank and the 
force of gravity of the mass are both negative. 
 

 

 

 

 

 
 
Next we are going to sum the forces in the x-direction, however, before we 
can, we need to break the force of tension in to its components. Actually, all 
we really need is the force of tension in the x-direciton.  

 
 

 

 
 
P.s. I know we did not solve for the force of static friction (or, for that matter, the minimum coefficient of 
static friction to hold the plank on the wall), however, you are welcome to sum the forces in the y-
direction, or pick a different axis of rotation and sum the torques on the plank, and you will be able to 
solve for that. Enjoy! 
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Flipping Physics Lecture Notes: 
 

Rolling Without Slipping 
Introduction and Demonstrations 

 
Realize these lecture notes will be much better understood with the visuals in the video at 
https://www.flippingphysics.com/rolling-without-slipping.html 
 
An object which is rolling without slipping stays in contact with the ground and does not slide relative to 
the ground. Rolling without slipping combines translational with rotational motion. 
 
Every part of the object in translational motion moves with the same velocity. We will define that as the 

velocity of the center of mass of the translational object:  

The center of mass of the rotational object has zero velocity:  

The outer edge of the rotational object has a velocity equal to its tangential velocity:  
 
The velocity of every point on the object rolling without slipping equals the addition of the tangential 
velocity and the rotational velocity. Because the point of contact of the object rolling without slipping does 
not move relative to the stationary ground, the velocity at the point of contact is zero. Therefore, the 
velocity of the center of mass of an object rolling without slipping equals the radius of the object times the 
angular velocity of the object: 

 

This is very much like the tangential velocity equation, however, “r” is the radius of the object:  
 
The kinetic energy of an object rolling without slipping includes translational and rotational kinetic 

energies:  
 
Notice the equations for distance travelled by and acceleration of an object rolling without slipping can 
also be derived this same way and are also similar to their arc length and tangential acceleration 

counterparts:  
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Flipping Physics Lecture Notes: 
 

Rolling Acceleration Down an Incline 
 

Example: Determine the acceleration of a uniform, solid cylinder rolling without slipping down an incline 
with incline angle θ. The rotational inertia of a uniform, solid cylinder about its long cylindrical axis is 
½MR2. Assume the cylinder starts from rest. 
 

 
 
There is no work done by a force applied or a force of friction, therefore, there is no energy added or 
removed from this system, so mechanical energy is conserved. I do understand there is a force of static 
friction acting on the cylinder which causes it to rotate, however, because the cylinder does not slide, the 
force of friction does not cause any energy to be converted to heat or sound. 

 
Set the initial point where the cylinder starts at rest and the final point after the 

cylinder has moved a distance . Set the zero line at the center of mass of 
the cylinder at the final position. 
 
There is no spring so no elastic potential energy initial or final. 
Initially the cylinder is at rest so no kinetic energy. 
The only type of initial mechanical energy is gravitational potential energy because the cylinder is above 
the zero line. 
There is not final gravitational potential energy because the cylinder is at the zero line. 
The cylinder has translational kinetic energy final and rotational kinetic energy final because it is both 
rotating and its center of mass is translating from one point to another. 

 
Substitute in the equation for rotational inertia of the solid cylinder.  
 

The cylinder is rolling without slipping so  

 
Everybody brought mass to the party! 
 

 
 
Acceleration down the incline will be constant, so we can use the uniformly 
accelerated motion equation: 

 
Notice this means the only variables which affect the acceleration of a uniform object rolling without 
slipping down an incline are the planet (acceleration due to gravity), the incline angle θ, and the shape of 
the object. What I mean by the “shape of the object” is the factor in front of the MR2 in the rotational 
inertia equation. Not the mass or radius of the object, but rather just that factor in front of the MR2.  

a = ?; Uniform Solid Cylinder; Rolling without Slipping; Incline Angle = θ; I = 1
2
MR2; v

i
= 0

ME
i
= ME

f

Δd
!

⇒mgh
i
= 1
2
mv

f
2 + 1
2
Iω

f
2 = 1
2
mv

f
2 + 1
2
1
2
mR2⎛

⎝⎜
⎞
⎠⎟
ω

f
2

v
cm

= Rω = v
f
⇒ v

f
2 = R2ω

f
2

⇒mgh
i
= 1
2
mv

f
2 + 1
4
mv

f
2 ⇒ gh

i
= 1
2
v
f
2 + 1
4
v
f
2 = 2

4
+ 1
4

⎛
⎝⎜

⎞
⎠⎟
v
f
2 = 3
4
v
f
2 ⇒ v

f
2 = 4
3
gh

i

sinθ = O

H
=

h
i

Δd
!

⇒ h
i
= Δd

!
sinθ ⇒ v

f
2 = 4
3
gΔd

!
sinθ

v
f!

2 = v
i!

2 + 2a
!
Δd

!
⇒ 4
3
gΔd

!
sinθ = 2a

!
Δd

!
⇒ a

!
= 1
2

⎛
⎝⎜

⎞
⎠⎟
4
3
g sinθ

⎛
⎝⎜

⎞
⎠⎟
= 2
3
g sinθ



0300 Lecture Notes - Rolling Acceleration Down an Incline.docx page 2 of 2 

Demonstration:  
 

 
The slope of velocity a function of time is acceleration, so our experimental acceleration down the incline 
is also 1.73 m/s2!! 
 

g = 9.81m
s2
;θ =15.3°⇒ a

!
= 2
3
9.81( )sin 15.3( ) =1.72573 ≈1.73m

s2
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Flipping Physics Lecture Notes: 
 

Which Will Be First? (Rolling Down an Incline) 
 

Example: A hollow sphere, solid sphere, and thin hoop are 
simultaneously released from rest at the top of an incline. Which will 
reach the bottom first? Assume all objects are of uniform density. 
 

 
According to conservation of mechanical energy, each object starts with all gravitational potential energy 
and ends with translational and rotational kinetic energies. 

 
In our previous lesson we showed that only the acceleration due to gravity, incline angle, and fraction in 
front of the MR2 equation for rotational inertia of the object affect the acceleration down the incline. All 
three objects are on the same incline and planet, therefore the only difference for each object is the 
fraction in front of the MR2 equation for rotational inertia. 

Considering the equation for rotational kinetic energy is , a smaller rotational inertia, I, will 
mean a smaller rotational kinetic energy. A smaller rotational kinetic energy will mean more energy left 
over for translational kinetic energy. In other words: 

 
So the smallest fraction for the rotational inertia equation for the object will mean the largest final velocity, 
which means it will get there first. 
 
Rather than looking up the rotational inertia equations for solid sphere, hollow sphere, and thin hoop, 
realize you should be able to compare their relative MR2 fractions empirically using the equation for 
rotational inertia: 

 
In other words, the more mass an object has located farther from its axis of rotation, the higher the 
rotational inertia. Therefore, the order of fraction, X, in the rotational inertia equation should be: 

 
 
Therefore, the order of final velocities should be: 

 
 

Therefore, the order of objects reaching the bottom of the incline should be: 
• 1st: Solid Sphere 
• 2nd: Hollow Sphere 
• 3rd: Thin Hoop 

 
Which our demonstration clearly shows to be true. J 
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Flipping Physics Lecture Notes: 

 

Which Direction will the Wheel Accelerate? 

 

 

Example: A rope is wrapped around a bicycle wheel. The wheel is released from rest and allowed to 

descend without slipping as the rope unwinds from the wheel. While descending, does the center of the 

wheel move straight down, toward the left, or toward the right? 

 

 

  No acceleration in the x direction. 

 

 There is an acceleration in the y direction. 

 

Center of the wheel will accelerate downward and not to the left or to the right. 

 

 

F
x
= 0 = ma

x
⇒ a

x
= 0∑

F
y
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Flipping Physics Lecture Notes: 

 

Acceleration of a Wheel descending on a Rope 

(Torque Solution) 

 

Example: A rope is wrapped around a bicycle wheel with a rotational inertia of 0.68MR
2
. The wheel is 

released from rest and allowed to descend without slipping as the rope unwinds from the wheel. In terms 

of g, determine the acceleration of the wheel as it descends. 

 

 

 

 

Note:  

 

 

 

  

 

Testing our answer:    

Predicted acceleration 

 

 

 

Measured acceleration 
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Flipping Physics Lecture Notes: 

 

Acceleration of a Wheel descending on a Rope (Energy Solution) 

 

Example: As shown, a rope is wrapped around a bicycle wheel with a rotational 

inertia of 0.68MR2. The wheel is released from rest and allowed descend 

without slipping as the rope unwinds from the wheel. In terms of g, determine 

the acceleration of the wheel as it unwinds from the wheel.1 

 

Conservation of Mechanical Energy with initial point where the wheel starts, 

final point after the wheel has gone down a distance h, and horizontal zero line 

at the final point. 

 
There are no springs in the problem, so no elastic potential energy initial or final. 

Initially the wheel is at rest, so it has no initial kinetic energy. 

The wheel is initially above the zero line, so it has initial gravitational potential 

energy. 

At the final point the wheel is at the zero line, so it has no final gravitational potential energy. 

At the final point the wheel is both rotating and moving translationally, so it has both final translational 

kinetic energy and final rotational kinetic energy. 

 
The mass of the wheel is M, initial height of the wheel is h, and the rotational inertia of the wheel is 

0.68MR2. Everybody brought mass to the party so we can be equitable and take mass from everybody.  

 
Remember the velocity of the center of mass of an object which is rolling without slipping is similar to the 

tangential velocity equation. The bicycle wheel is rolling without slipping down the rope, so the velocity of 

the center of mass of the wheel is the final velocity of the wheel. 

 

We can substitute in for in our equation and solve for . 

 

The wheel has a uniform acceleration, so we can use one of the uniformly accelerated motion equations: 

 

The initial velocity of the wheel is zero, substitute  in for , and substitute  in for  because 

the wheel goes down a distance “h” from the initial to the final points. Everybody brought “h” to the 

party… And now we can solve for the acceleration of the wheel in the y-direction: 

 
(The negative means the acceleration is down.) 

 

Our answer matches when we did this using torque instead of energy! J 

                                                   
1 Previously we did this problem using net force and net torque instead of conservation of mechanical energy. 

https://www.flippingphysics.com/wheel-rope-acceleration-torque.html 
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Flipping Physics Lecture Notes: 
 

Angular Momentum of Rigid Objects with Shape Introduction 
 

We already know the equation for the linear momentum of an object:  
 

An object can also have angular momentum:  
• The symbol for angular momentum is capital L. 
• Linear momentum has inertial mass; angular momentum has rotational inertia. 
• Linear momentum has linear velocity; angular momentum has angular velocity. 
• Angular momentum is a vector and its direction is the same as the direction of the angular 

velocity of the object. 
• Angular momentum has an axis of rotation! (which you must identify) 
• The units for angular momentum are: 

o  
 

 is the equation for the angular momentum of Rigid Objects with Shape. In other words, objects 
which do not change shape easily and are larger than point particles. For example, disks, cylinders, 
spheres, planets, etc. 
 
 
 
 
Example: Determine the angular momentum of a 141 g, 31.4 cm diameter record rotating clockwise at 45 

revolutions per minute.  
 

 

Axis of rotation at Center of Mass of Disk.
 

 
 
But what about the direction? According to the right-hand rule, the fingers of your right hand curl in the 
direction the record is rotating and you stick out the thumb of your right hand which points in the direction 
of the angular velocity and angular momentum, which is into the page, which is negative. 
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Flipping Physics Lecture Notes: 

Conservation of Angular Momentum Introduction and Demonstrations 

 

We have already learned about conservation of linear momentum:  

As you can imagine, the equation for conservation of angular momentum is similar:  

We will talk about when angular momentum is conserved in a little bit, let’s start however, with a simple demonstration 

of conservation of angular momentum. 

 

If I am spinning on a stool holding two masses at arm’s length straight out from my body and then pull in my arms, what 

will happen? From general knowledge of sports like figure skating, gymnastics, dance, and diving, you probably already 

know that my angular velocity will increase. It is important to know why. The equation for angular momentum of a rigid 

object with shape is: . Therefore, the equation for conservation of angular momentum in the example of me 

spinning on a stool is: 

 
It is important to recognize that the axis of rotation for the angular momenta and rotational inertias in these equations is 

the vertical axis through the center of the stool. 

The equation for the rotational inertia of a system of particles is:  

In other words, bringing in my arms decreases the average distance the particles of the system are from the axis of 

rotation, which decreases the rotational inertia of the system, therefore, because angular momentum is conserved, the 

angular velocity of the system must increase. 

 
 

Now let’s talk about when angular momentum is conserved. As you recall linear momentum is conserved when the net 

force on the system equals zero. 

 
Angular momentum is conserved when the net external torque acting on the system equals zero. 

 
Hopefully you can see the similarities in the derivations. J 

 

Returning back to me sitting on the stool. Notice that, about the vertical axis through the center of the stool, the net 

external torque acting on the system of me and the stool is zero, therefore angular momentum of the system will stay 

constant. The initial angular velocity of the system is zero, therefore, I can wave my arms around all I want, but doing so 

will not change the angular momentum of the system. However, if I push on something external to the system, I can 

cause a net torque on the system, angular momentum is no longer conserved, and I can increase my angular velocity. 

 

Remember that angular momentum is a vector, therefore, when angular momentum is conserved, its direction is 

conserved as well. This is why a spinning top will maintain its vertical position. Its angular momentum, according to the 

right hand rule, will be vertical and therefore, as long as the top continues to spin, the angular momentum will be 

conserved and the top will stay vertical. However, a top which is not spinning, has no angular momentum, and will not 

stay vertical. 

 

We can also apply this concept to a moving bicycle. The wheels of the bike, while the bike is moving, are spinning and 

have angular momentum. While you are moving forward, the direction of the angular momentum of the wheels will be to 

the left. Conservation of angular momentum will try to maintain the direction of the angular momentum of the wheels 

and therefore will help keep the bicycle vertical. If the bike is not moving, the wheels have no angular momentum and 

therefore do not help keep the bicycle vertical. Conservation of angular momentum is why it is easier to balance on a 

bike while it is moving. 
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Flipping Physics Lecture Notes: 
 

Wheel Conservation of Angular Momentum Demonstration and Solution 
 
Let’s start with me sitting on a stool free to rotate around a vertical axis through the center of the stool. 
About that axis, there is no net external torque acting on the stool and me system, so angular momentum 
of the system is conserved. Initial momentum of the system is zero, so as much as I wave my arms and 
legs around, I cannot cause the stool to rotate because the angular momentum of the system will stay 
zero. 
 
However, if I am holding a spinning wheel, the wheel has angular momentum and if I apply a torque to the 
spinning wheel, the spinning wheel will apply an equal but opposite torque back on me which will cause 
me to rotate. Note, the angular momentum of the system is still conserved because the two torques, 
which are equal and opposite, will cancel out, and result in a net torque on the system of zero. In other 
words, both of these torques, the torque I apply to the wheel and the equal but opposite torque the wheel 
applies on me, are internal to the person, chair, and wheel system. 
 
Example: A person is holding a spinning wheel while sitting on a stool which is free to rotate. If the person 
rotates the wheel 180° about a horizontal axis, in terms of the initial angular momentum of the wheel, 
what is the final angular momentum of the person and stool? (assume no friction) 

 

 

 

 
 
There is an interesting result to our answer. Notice the direction of the final angular momentum of the 
stool and person is in the same direction as the initial angular momentum of the wheel. This is true 
regardless of which direction the person rotates the spinning wheel. J 
 
Just so you know, this same physics is how NASA rotates the Hubble Space Telescope. In space there is 
nothing to push off of to cause a net external torque on the telescope. Therefore, there are near 
frictionless gyroscopes constantly spinning on the telescope which can be rotated, which in turn rotates 
the direction the Hubble Space Telescope is pointing. The International Space Station also has 
gyroscopes to control its rotation. Which is pretty darn cool, if you ask me. 
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Flipping Physics Lecture Notes: 
 

Merry-Go-Round 
Conservation of Angular Momentum Problem 

 
Example: A 25 kg child is sitting on the edge of a merry-go-round. The merry-go-
round has a mass of 255 kg and is rotating at 2.0 radians per second. The child 
crawls to the middle of the merry-go-round. What is the final angular speed of the 
merry-go-round? You may make the following estimations: The child is a point 
particle; the merry-go-round is a solid disk and has an axle with negligible friction. 
Idisk = ½MR2. 
 

 

 
For subscripts let’s use c for child and w for wheel (a.k.a merry-go-round). Because net torque equals 
change in angular momentum over change in time, we know angular momentum is conserved when the 
net external torque acting on the system equals zero. There is no friction on the axle of the merry-go-
round, so, because it equals zero, friction on the axle does not cause an external torque on the merry-go-
round. As the child crawls toward its center, there is a force of static friction from the merry-go-round on 
the child and, according to Newton’s third law, an equal but opposite force of static friction from the child 
on the merry-go-round. Because the axis of rotation is at the center of the merry-go-round, those two 
forces cause equal but opposite torques on the child and merry-go-round system, which means the two 
torques are internal to the system and cancel one another out. So the net torque on the system is zero 
and angular momentum, about the axle of the merry-go-round, is conserved. 

 
• There is no direction given in the problem and we are solving for angular speed. So let’s drop the 

vector symbol from the equations and solve for the magnitude of final angular velocity. 

• The equation for angular momentum of a rigid object with shape is: . 
• When a point particle is moving in circular motion, the point particle has an angular momentum: 

. We will assume this to be true for now, however, we will prove this in a later lesson. 
 

 
 

 
• Notice that we do not need subscripts for initial and final for the rotational inertia of the 

wheel/merry-go-round because its rotational inertia does not change. 

•  

• Both objects have the same angular velocities:   

• For the radius of the wheel, let’s use R:  
 

 

Knowns:m
c
= 25kg;m

w
= 255kg;ω

wi
= 2.0 rad

s
; child: outside edge→ center; I

disk
= 1
2
MR2;

child = point particle; µ
w
≈ 0;ω

wf
= ?

!τ
external

= Δ
!
L

Δt
= 0⇒∑

!
L
i
=

!
L
f∑∑

!
L = I

!ω

!
L = I

!ω
!
L
i
=

!
L
f∑ ⇒ L

ci
+ L

wi
= L

cf
+ L

wf∑ ⇒ I
ci
ω

ci
+ I

w
ω

wi
= I

cf
ω

cf
+ I

w
ω

wf

I
system of
particles

= m
i
r
i

2

i

∑ ⇒ I
c
= m

c
r
c

2

ω
ci
=ω

wi
=ω

i
&ω

cf
=ω

wf
=ω

f

r
w
= R

⇒ m
c
r
ci
2( )ω i

+ 1
2
m

w
R2⎛

⎝⎜
⎞
⎠⎟
ω

i
= m

c
r
cf
2( )ω f

+ 1
2
m

w
R2⎛

⎝⎜
⎞
⎠⎟
ω

f



0306 Lecture Notes - Merry-Go-Round - Conservation of Angular Momentum Problem.docx page 2 of 2 

• The initial distance from the axis of rotation to the location of the child is the same as the radius of 

the wheel: . 

• The final distance from the axis of rotation to the location of the child is zero: . 
o Realize this means our child has zero rotational inertia when sitting at the center of the 

merry-go-round. Hopefully you realize this will not be true in real life because the child 
has non-zero size and therefore will have rotational inertia. This is a simplified solution 
and helps with understanding. The child’s small size and therefore quite small rotational 
inertia relative to the merry-go-round makes this an okay estimation. 

 
• Everybody brought R2 to the party! 

 

 
 

 
Does it make sense that the angular velocity of the system increases as the child moves toward the 
middle of the merry-go-round? Let’s go back to the conservation of angular momentum equation near the 
beginning of the solution: 

 
Angular momentum is conserved. The rotational inertia of the wheel remains unchanged throughout the 
whole event. But as the child moves in toward the axis of rotation, the rotational inertia of the child 
decreases, therefore, in order to maintain a constant angular momentum of the system, the angular 
velocity of the system has to increase. In other words, the angular momentum of the system does not 
change, so if the rotational inertia of the system decreases, the angular velocity of the system must 
increase. 
 
Realize, this increase in angular velocity of the system actually represents an increase in the kinetic 
energy of the system. There is no translational motion of the system, so all of the kinetic energy is 
rotational kinetic energy. The change in kinetic energy of the system is: 

 

 

 

 
The change in kinetic energy of the system is positive because the child had to do work on herself, and 
therefore the system, in order to crawl from the outside edge to the center of the merry-go-round. 
Because net work equals change in kinetic energy, we know she did 60R2 joules of work on the system to 
increase the kinetic energy of the system. The larger the radius of the merry-go-round, the more work she 
has to do to the system. 
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Flipping Physics Lecture Notes: 

 

Angular Momentum of Particles Introduction 

 

We have already worked with the angular momentum of 

rotating objects like records, spinning tops, and merry-

go-rounds. Because those objects are rotating, it is 

probably clear they have angular momentum. Today we 

are going to show that an object which is moving in a 

straight line can also have angular momentum. 

 
You really need to watch the video at 

http://www.flippingphysics.com/angular-momentum-

particles.html 

 

The equation for angular momentum of a rigid object with shape is:  

 

Because the wooden board is not moving before the collision with the point particle, the board has an 

angular velocity of zero and therefore an angular momentum of zero before the collision. After the 

collision, the wooden board does have an angular velocity and therefore angular momentum. Because 

the wooden board has gained angular momentum, that angular momentum must have come from 

somewhere. The explanation is that the point particle, which was moving in a straight line, transferred 

some of its angular momentum to the wooden board. Therefore, the point particle, which was moving in a 

straight line, has angular momentum. 

 

The equation for the magnitude of the angular momentum of a point particle is:  

In the video we give evidence that this equation is correct. 

• r is the vector pointing from the axis of rotation to the center of mass of the point particle. 

• m is the mass of the point particle. 

• v is the velocity of the point particle. 

• θ is the angle between the direction of the r vector and the velocity of the point particle. 

 

Please realize angular momentum is still about an axis of rotation and you need to identify the axis of 

rotation when using the equation for the angular momentum of a point particle. 

 

Angular momentum is a vector and the way you determine the direction of the angular momentum of a 

point particle is by using the right hand rule. Fingers of your right hand start at the axis of rotation, point 

your fingers in the direction of “r”, curl your fingers in the direction of the velocity, and stick out your 

thumb. Your thumb points in the direction of the angular momentum of the point particle. 

 

!
L = I

!ω

L = rmv sinθ
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Flipping Physics Lecture Notes: 
 

Common Point Particle Angular Momentum Triangle 
 

In our previous lesson we used a wooden board mounted on a Lazy Susan to introduce the equation for 
the angular momentum of a point particle:  

• r is the vector pointing from the axis of rotation to the center of mass of the point particle. 
• m is the mass of the point particle. 
• v is the velocity of the point particle. 
• θ is the angle between the direction of the r vector and the velocity of the point particle. 

 
In this lesson we are going to introduce a common triangle used when a point particle is moving towards 
a rigid object with shape. In this example, the point particle is moving toward the wooden board and will 
collide with the board. During that collision, angular momentum is conserved and an important piece to 
understand is what the angular momentum of the point particle is before it strikes the wooden board. 
 

 
 

The angle in the angular momentum equation is the angle between the direction of the r vector and the 
velocity vector, so it is θ1 however, because θ1 and θ2 are supplementary angled (they add up to 180°) the 
sines of those two angles are equal: 

 
Therefore, when using the angular momentum equation, we can use either angle. 

 
 
This means while both r and θ change as a function of position, the distance y is constant. That means 
that, if the point particle is moving at a constant velocity, the angular momentum of the point particle is 
also constant. 
 

 
 
This basic concept is used frequently when solving conservation of angular momentum problems 
involving a point particle and a rigid object with shape. 

L = rmv sinθ
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Flipping Physics Lecture Notes: 
 

What are the Equations for 
Kinetic Energy and Angular Momentum 
of a Point Particle Moving in a Circle? 

 

The equation for the Kinetic Energy of a translationally moving object:  

The equation for the Kinetic Energy of a rotating object is:  
 
A point particle which is moving in a circle is moving translationally because its center of mass is not in 
one constant location and it is rotating because it is moving around an axis of rotation. So which equation 
for Kinetic Energy should we use? 

The equation for the rotational inertia of a system of particles is:  

Therefore, the equation for the rotational inertia of a single particle is:  
Where R is defined as the radius of the circle the point particle is describing. 
 

This means the Rotational Kinetic Energy is:  

And the linear velocity of the point particle is a tangential velocity:  

Therefore:  
 
The two equations are the equal. 
You can use either equation to describe the kinetic energy of a point particle moving in a circle. 
 
You can do the same thing with Angular Momentum of a Point Particle versus a Rigid Object with Shape: 

 
 

 
The two equations are the equal. 
You can use either equation to describe the angular momentum of a point particle moving in a circle. 
 
What if the point particle is moving in an ellipse? (Like a satellite) 

• Nothing changes in the derivation for kinetic energy, which is a scalar. Therefore, you can still use 
either the translational or rotational equation for kinetic energy. 

• Something does change for angular momentum, which is a vector. The angle between the r 
vector and velocity is no longer 90 degrees and our derivation is no longer valid. 

o We cannot use the equation  for a point particle moving in an ellipse, 

we have to use . 
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Flipping Physics Lecture Notes: 
 

Orbital Momentum Conservation 
 

Example: A satellite is in an elliptical orbit. Is its ______ momentum conserved? (a) linear, (b) angular. 
 
(a) Linear momentum is conserved when the net force acting on the system equals zero: 

 
The system in this case is just the satellite. So, is the net force acting on an object in an elliptical orbit 
equal to zero? Let’s draw a free body diagram of the forces acting on the satellite. 
 
FBD: Fg toward center of the primary object which is the object the satellite is orbiting around. 
 
There is only one force acting on the satellite, the force of gravitational attraction caused by the primary, 
therefore the net force acting on the satellite cannot be zero. So, linear momentum is not conserved for 
an object in an elliptical orbit. 

 
 
(b) Angular momentum is conserved when the net torque acting on the system equals zero: 

 
 
Again, the system is just the satellite. So, is the net torque acting on an object in an elliptical orbit equal to 
zero? We have already drawn the free body diagram, however, before we can answer the question it is 
important to remember we have to identify an axis of rotation when working with net torque and angular 
momentum. Let’s define the axis of rotation for the satellite as the center of the primary. Because the only 
force acting on the satellite is the force of gravitational attraction which points directly toward the center of 
mass of the primary, the torque caused by this force equals zero, and therefore angular momentum of a 
satellite in elliptical orbit is conserved about the center of mass of the primary. 

 
 
I will point out that, if we assume the orbit is circular, the answers to both of our questions are the same. I 
simply identified the orbit as elliptical because most orbits are nearly elliptical and very few orbits are 
nearly circular. 
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Flipping Physics Lecture Notes: 

 

Are Linear and Angular Momentum Conserved during this Collision? 

 

Example: As shown, a point particle strikes a 

wooden board mounted such that it is free to rotate 

about its center. During this collision, is _____ 

momentum of the point particle and wooden board 

system conserved? (a) Linear, (b) Angular. 

 

Pictures do not do the example justice. 

Please watch the video. 

https://www.flippingphysics.com/collision-angular-

momentum-conservation.html 

 

Let’s start with linear momentum. As the point particle moves toward the wooden board, it is moving to 

the left and therefore has linear momentum which is to the left. After the collision, the point particle is 

moving to the right and therefore has linear momentum which is to the right. So, clearly the linear 

momentum of the point particle changes and is not conserved. However, we are talking about the linear 

momentum of the point particle and wooden board system. So, what about the linear momentum of the 

wooden board? 

 

Before the collision the wooden board is not moving, so it has zero linear momentum. After the collision 

the wooden board is rotating, however, its center of mass is not moving, so it still has zero linear 

momentum. Therefore, the wooden board has zero change in its linear momentum. 

 

Summing the linear momenta of the wooden board and the point particle, there must have been a change 

in linear momentum of the system because the linear momentum of the point particle changed, and the 

linear momentum of the wooden board did not. Therefore, linear momentum of the point particle and 

wooden board system is not conserved. 

 

Looking at the equations, linear momentum is conserved when the net force on the system equals zero: 

 
 

Therefore, the net force on the system in this example must not equal zero. When the point particle 

collides with the board, the point particle applies a force on the board and, according to Newton’s Third 

Law, the board applies an equal but opposite force on the point particle. Those two forces are internal to 

the system and cancel one another out. So what is another force which is causing the net force on the 

system to not equal zero? 

 

Because the board is attached to a Lazy Susan which allows the board to rotate but not change locations, 

while the point particle strikes the board, the pivot point applies an external force on the board which 

prevents the board from entering into translational motion. That means the net external force acting on 

the board and point particle system during the collision does not equal zero, and linear momentum of the 

system is not conserved. Please realize this force from the 

pivot point only acts on the board and point particle system 

while the point particle is in contact with the board which is 

only a very short time interval. Also, I will point out, 

however, that, if the board were not held in place at the 

pivot point and were instead on a frictionless surface, 

there would be no net external force acting on the board 

and point particle system, and linear momentum of the 

system would be conserved. After that collision, the board 

would enter in to both rotational and translational motion. 
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What about angular momentum? Is the angular 

momentum of the point particle and wooden board 

system conserved? Going back to looking at the 

directions of the angular momenta. As the point particle is 

moving toward the board, it has angular momentum 

which is, according to the right-hand rule, out of the 

screen. At this point the board is not moving and has zero 

angular momentum. So, before the collision, the system 

has angular momentum which is out of the screen. 

   

After the collision the point particle is moving in the opposite direction and has, according to the right-

hand rule, angular momentum which is into the screen. The board now has an angular momentum which 

is out of the screen. Therefore, the angular momentum before the collision is out of the screen and after 

the collision is the summation of the point particle’s into the screen and wooden board’s out of screen 

angular momenta. In other words, this approach is inconclusive. We cannot tell right now if the angular 

momentum of the point particle and wooden board system is conserved during this collision. We are 

going to have to rely on the equations. 

 

    
 

Angular momentum is conserved when the net torque on the system equals zero: 

 
 

We already have discussed all the forces acting on the system, so let’s see how those cause torques on 

the system. Let’s sum the torques about the axis of rotation of the wooden board. 

 

The two torques caused by the Newton’s Third Law Force Pair of forces (the particle on the board and the 

board on the particle) have the same r vector and their two angels are supplementary, which means they 

have the same value for sine. Therefore, those two torques are equal and opposite and cancel one 

another out. 

 

What about the centripetal forces internal to the wooden board which cause the board to rotate? By 

definition, those centripetal forces are directed in toward the axis of rotation of the board. Therefore, the r 

vector and force vector are opposite in direction and the angle between those two is 180 degrees. The 

sine of 180 degrees equals zero. So the centripetal forces internal to the wooden board cause zero 

torque on the board. The net torque on the system then equals zero and the angular momentum of the 

point particle and wooden board system is conserved about the axis of rotation of the wooden board! 
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Flipping Physics Lecture Notes: 
 
 
 

Point Particle with Rigid Object Collision 
Conservation of Angular Momentum Demonstration 

and Problem 
 

Example: As shown, a 5.3 g dart moving horizontally at 16.9 
m/s collides with and sticks to a stationary Rotational Inertia 
Demonstrator a distance of 31.7 cm from the axis of rotation of 
the RID. What is the final angular velocity of the RID? IRID = 0.0237 kg·m2 

 
We have already determined that, about the axis of rotation of the rigid object with shape, angular 
momentum is conserved in a situation where a point particle (the dart) collides with a rigid object with 
shape (the RID). https://www.flippingphysics.com/collision-angular-momentum-conservation.html 
 

 
 

• We currently have two equations for angular momenta of objects: 

 
• For the dart before the collision, we use the equation for the angular momentum of a point 

particle:  
o We are treating the dart as a point particle, so you will see me refer to it as both a “dart” 

and a “point particle”, depending on the situation. 
• Before the collision the RID is not moving, so it does not have any angular momentum. 
• For the dart after the collision, we have shown that we can use either of the two equations for the 

angular momentum of the point particle because it is moving in a circle. Let’s use:  
https://www.flippingphysics.com/point-particle-kinetic-energy-and-angular-momentum-equations.html 

•  
• For the RID after the collision, we have to use the equation for the angular momentum of a rigid 

object with shape:  
 

 
 

• We have already shown that, while ri d and θi d change as the dart moves, y, which equals 

 does not change:  
https://www.flippingphysics.com/collision-angular-momentum-conservation.html 

• The equation for rotational inertia of a point particle is:  
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• The dart stays the distance “y” from the axis of rotation after it sticks to the RID:  

• Both the dart and the RID are rotating together after the collision:  
 

 

 
This is our predicted final angular velocity of the system. 

 
 
Measured final velocity of the system: 

 

 
 
 

 
 
If you were curious where the rotational inertia of the rotational inertia demonstrator came from, it is the 
addition of the rotational inertia of it without masses and the rotational inertia of the four 26.1 gram 
masses which are each 31.0 cm from the axis of rotation. We measured the rotational inertia of the 
rotational inertia demonstrator in this video: https://www.flippingphysics.com/thin-rod-rotational-inertia.html 
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Flipping Physics Lecture Notes: 
 

Dart with Thin Rod Collision 
Conservation of Angular Momentum Demonstration and Problem 

 
Example: As shown, a 5.3 g dart is moving vertically at 16.5 m/s just before it collides with and sticks to a 
33.9 cm long, thin piece of cardboard. If the dart hits the 71.8 g piece of cardboard 28.7 cm from its fixed 

end, to what maximum angle does the cardboard rise?    

               

 

 

 
 
We have already determined that, about the axis of rotation of the rigid object with shape, angular 
momentum is conserved in a situation where a point particle collides with a rigid object with shape. 
https://www.flippingphysics.com/collision-angular-momentum-conservation.html 
 
However, the collision is just part 1 of the problem, part 2 of the problem is conservation of mechanical 
energy as the cardboard and dart rise together. We know mechanical energy is conserved while the 
cardboard rotates because there is no energy added to or removed from the system via work done by a 
force of friction or force applied. 

 
 

• We currently have two equations for angular momenta of objects: 

 
• For the dart before the collision, we use the equation for the angular momentum of a point 

particle:  
o We are treating the dart as a point particle, so you will see me refer to it as both a “dart” 

and a “point particle”, depending on the situation. 
• Before the collision the cardboard is not moving, so it does not have any angular momentum. 
• For the dart after the collision, we have shown that we can use either of those two equations for 

the angular momentum of the point particle because it is moving in a circle. Let’s use: 

 
https://www.flippingphysics.com/point-particle-kinetic-energy-and-angular-momentum-equations.html 

I
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• For the cardboard after the collision, we have to use the equation for the angular momentum of a 

rigid object with shape:  

 
 

• We have already shown that, while ri d and θi d change as the dart moves, x, which equals 

 does not change:  
https://www.flippingphysics.com/angular-momentum-triangle.html 

• The equation for rotational inertia of a point particle is:  

 
 

• The dart stays the distance “x” from the axis of rotation after it sticks to the cardboard:  
• Both the dart and the cardboard are rotating together after the collision and the final angular 

velocity of part 1 is the same as the initial angular velocity for part 2:  

 

 
 

• And now for part 2 we use conservation of mechanical energy:   
o The initial point is right after the dart collides with the cardboard and before the cardboard 

starts to rise. The final point is at the maximum angle the cardboard rises to. Lets set the 
horiztonal zero line at the initial height of the dart and cardboard. 

• There are no springs, so no elastic potential energy in the problem. 
• Initially the dart and cardboard are at the horizontal zero line, so they do not have any 

gravitational potential energy initial. 
• The only type of initial mechanical energy is kinetic energy and because the system is rotating, it 

is the combined rotational kinetic energy initial of both the dart and the cardboard. 
• At the final point, the dart and cardboard are not moving, so they have no final kinetic energy. 
• At the final point, the dart and cardboard are above the zero line, so they have final gravitational 

potential energy. 

 
 

• The rotational inertia of the system is:  

o The distance from the dart to the axis of rotation is still x:  
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• Notice the only two variables we do not know in this equation are the two height finals. 
o In order to reduce this equation to one unknown, we need to draw triangles and use 

trigonometry to find relationships between the angle, θ, between the cardboard and the 
horizontal, and both height finals. 

o The height for part 2 final of the cardboard is to the center mass of the cardboard. We will 
consider the cardboard to be of uniform density, so the center of mass is in the middle of 
the cardboard. 

  
 

 

 

 

 
This is our predicted final angle of the cardboard. 
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Alternative solution with not solving for the initial angular velocity for part 2: 
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