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Flipping Physics Lecture Notes: 
 

Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System 
 

A Horizontal Mass-Spring System is where a mass is attached to a spring, oriented horizontally, and then 
placed on a frictionless surface. When the mass is at rest, the spring will be at the equilibrium or rest 
position. This is the vertical line shown in the diagram below. We can then pull the mass to the right and 

hold it there. Let’s call this position #1. Notice at position #1 the force of the spring,    
!
F

s1
, is to the left 

because the displacement of the spring from equilibrium position,    
!
x

1
, is to the right. We know this because 

of Hooke’s Law,   
!
F

s
= −k

!
x . 

 
When we let go of the mass the spring force will accelerate the mass to the left, the mass will pass through 
the equilibrium position, which we can call position #2. After passing through rest position, the mass will 
pause to the left of the equilibrium position. Let’s call this position #3. Notice position #3 is the same 
distance from position #2 as position #1. 
 
At position #2, the displacement from equilibrium 

position,    
!
x

2
, is zero. Therefore, according to 

Hooke’s Law, the force of the spring,    
!
F

s2
, is also 

equal to zero. 
 
At position #3, the displacement from rest position, 

   
!
x

3
, is to the left. Therefore, according to Hooke’s 

Law, the force of the spring,    
!
F

s3
, is to the right. 

 
In the absence of friction, the spring will continue to move back and forth through these positions like this: 
1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1 … and it will never stop. 
 
This is called Simple Harmonic Motion. There are two requirements for the force that causes simple 
harmonic motion: 

1) It must be a Restoring Force: A force that is always towards equilibrium. 
a. The spring force is a restoring force because it is always directed toward rest position and 

therefore will always accelerate the mass toward equilibrium position. 
2) The force must be proportional to displacement from equilibrium position. 

a. According to Hooke’s Law,   
!
F

s
= −k

!
x , the spring force is proportional to displacement from 

equilibrium position. In other words, the larger the displacement from equilibrium position, 
the larger the spring force. 
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Flipping Physics Lecture Notes: 
 

Simple Harmonic Motion - Force, Acceleration, and Velocity at 3 Positions 
 

We previously defined three locations for an object 
in simple harmonic motion. Positions 1 and 3 are at 
the maximum displacement from and on either side 
of equilibrium position. Position 2 is when the mass 
is at rest position. Now let’s determine some basics 
about the magnitudes of the velocities and 
accelerations at those positions. 
 
Notice that at positions 1 and 3, the velocity of the 
mass changes directions. This means the velocities 
at 1 and 3 are zero. This is just like the velocity at 
the top is zero for an object in free fall. This means 
the magnitude of the velocity halfway in between 
those two positions, in other words at position 2, will 
have a maximum value. 
 
At positions 1 and 3, displacement from equilibrium position, x, will have a maximum magnitude. That 

means, according to Hooke’s Law,   
!
F

s
= −k

!
x , the spring force will also have it’s maximum magnitude at 

positions 1 and 3. If we sum the forces in the x direction,  F
x∑ = F

s
= ma

x
, we can see the acceleration 

will also have its maximum magnitude at positions 1 and 3. 
 
Please realize that the spring force changes as a function of position, therefore, the net force in the x-
direction changes as a function of position, therefore the acceleration of the mass changes as a function of 
position, therefore simple harmonic motion is not uniformly accelerated motion. In simple harmonic motion 
the acceleration is not constant, therefore, you cannot use the uniformly accelerated motion equations. 
 

  F
x∑ = F

s
= ma

x
⇒ kx = ma

x
⇒ x ≠ constant  therefore   a ≠ constant .♥ 

 

                                                
♥ Yes, I am ignoring whether the spring force is to the left or right in this equation. It does not matter. I am simply 
showing that simple harmonic motion is not uniformly accelerated motion. 
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Flipping Physics Lecture Notes: 
 

Horizontal vs. Vertical Mass-Spring System 
 

Horizontal and vertical mass-spring systems are both in simple harmonic motion.  
• A vertical mass spring system oscillates around the point where the downward force of gravity and 

the upward spring force cancel one another out. 
• The restoring force for a horizontal mass-spring system is just the spring force, because that is the 

net force in the x-direction. 
• The restoring force for a vertical mass-spring system is the net force in the y-direction which equals 

the spring force minus the force of gravity. 
 

 



 

0254 Lecture Notes - When is a Pendulum in Simple Harmonic Motion.docx page 1 of 1 

Flipping Physics Lecture Notes: 
 

When is a Pendulum in Simple Harmonic Motion? 
 
Mass-spring systems and pendulums are both in simple harmonic 
motion. Both oscillate around an equilibrium position and have a 
restoring force pointed towards the equilibrium position that increases 
proportionally with displacement from the equilibrium or rest position. 
 

• The displacement from equilibrium position for a pendulum is an 
angular displacement. 

o Units are in degrees or radians. 
o Symbol is theta, θ. 
o Maximum displacement from equilibrium position is still 

Amplitude, A. 
 

• The restoring force for a pendulum is the force of gravity 
tangential to the path of the pendulum. This force is:  

o Proportional to displacement from equilibrium position 
and 

o Directed toward equilibrium position. 
 
Actually, the force of gravity tangential is only considered to be directed 
toward equilibrium or rest position for “small angles”. Typically I 
consider this to be less than 15°, however, some sources require the 
angle to be less than 10°. It depends on how much error you are 
willing to allow. The larger the angle, the larger the error. This is 
because of the small angle approximation. 
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Flipping Physics Lecture Notes: 
 

Demonstrating What Changes the Period of Simple Harmonic Motion 
 

The period of simple harmonic motion is the time it takes to complete one full cycle. 
• The units for period are typically seconds or seconds per cycle, however, they could also be in 

minutes, hours, days, fortnights, decades, millenniums, etc. 
• The symbol for period is T. 

 
Using our previously defined postions of 1 and 3 where the object is at its maximum displacement from 
equilibirum position and position 2 is at the equilibrium position, recall that the simple harmonic motion 
pattern is 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, … 
 
One full cylce in terms of position could be: 

• 1, 2, 3, 2, 1 or 3, 2, 1, 2, 3 or 2, 1, 2, 3, 2 or 2, 3, 2, 1, 2 
• or starting and ending somewhere between one of the positions as long as: 

1. the object starts and ends at the same location 
2. the object is moving in the same direction at the end as at the start 

 
The equations for the period of simple harmonic motion are: 

• For a mass-spring system: 
  
T = 2π m

k
 

o m is the mass in the mass-spring system. 
o k is the spring constant of the spring. 

• For a pendulum: 
  
T = 2π L

g
 

o L is the “pendulum length” which is the distance from the center of suspension to the center 
of mass of the pendulum bob. 

§ Center of suspension is the top, fixed end of the pendulum. 
§ Pendulum bob is the mass at the bottom of the pendulum. 

o g is the acceleration due to gravity in which the pendulum is located. 
§ On Earth that would be 9.81 m/s2. 

o This is called a simple pendulum. Meaning the rod/string is of negligible mass therefore the 
center of mass of a simple pendulum is the center of mass of the pendulum bob. 

 
What affects the period of a pendulum and a mass-spring system? 

• Amplitude is not in either period equation. 
o Amplitude does not affect the period of a pendulum or the period of a mass-spring system. 

• Acceleration due to gravity is not in the period equation for a mass-spring system. 
o g does not affect the period of a mass-spring system. 

• Mass is not in the period equation for a pendulum. 
o The mass of the pendulum bob does not affect the period of a pendulum. 

• Increasing the mass in a mass-spring system increases its period. 
o  m↑⇒ T ↑ for a mass-spring system. 

• Increasing the spring constant in a mass-spring system decreases its period. 
o  k ↑⇒ T ↓  for a mass-spring system. 

• Increasing the “pendulum length” increases its period. 
o  L ↑⇒ T ↑  for a pendulum. 

• Increasing the acceleration due to gravity decreases the period of a pendulum. 
o  g ↑⇒ T ↓  for a pendulum. 
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Flipping Physics Lecture Notes: 
 

Triple the Mass in a Mass-Spring System. How does Period Change? 
 

Example: If the mass in a mass-spring system is tripled, how does the period change? 
 

Knowns:   m2
= 3m

1  
and   T2

= ?T
1
 

We know the equation for the period of a mass-spring system: 
  
T = 2π m

k
 

So the period of the original mass-spring system is: 
  
T

1
= 2π

m
1

k
 

 
And the period of the new mass-spring system with three times the mass is: 

  
T

2
= 2π

m
2

k
= 2π

3m
1

k
= 2π

m
1

k
3 = T

1
3 ⇒ T

2
= T

1
3  

 

So tripling the mass, increases the period by the square root of 3:   T2
= T

1
3  

 
 

Demonstration:   T1
=1.67s  & 

  
T

2
= T

1
3 = 1.67( ) 3 = 2.8925 ≈ 2.89s  

 
However, the observed value for the period with three times the mass is 2.83 seconds. 
 

  
E

r
= O − A

A
×100 = 2.83− 2.8925

2.8925
×100 = -2.1608 ≈ -2.16%  

 
I think we can confidently say, “The physics works!!” 
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Flipping Physics Lecture Notes: 
 

Frequency vs. Period in Simple Harmonic Motion 
 

We have already defined the period, T, of simple harmonic motion as the time it takes for one full cycle or 
oscillation. Frequency, f, is defined as the number of cycles or oscillations per second. Hopefully you 
recognize then that frequency and period are inverses of one another. 

  
T = 1

f
 

The units for frequency are 
 

cycles
second

 which we call hertz (Hz) after the 19th 

century German physicist Heinrich Hertz♥ (1857-1894) who was the first to 
give conclusive proof of the existence of electromagnetic waves which were 
theorized by James Clerk Maxwell's electromagnetic theory of light which 
we will learn about later. 
 
For example, if we have a vertical mass-spring system with a period of 0.77 
seconds, the frequency of that mass-spring system is: 

  
f = 1

T
= 1

0.77
=1.2987 ≈1.3

cycles
second

or1.3 Hz  

Which means the mass-spring system should go through 1.3 oscillations every second. 
 
Another example, if we have a pendulum which goes through 15 cycles in 11 seconds, then the frequency 
of that pendulum is: 

  
f = 15 cycles

11 seconds
=1.36 ≈1.4 Hz  

Which we can compare to the period of the pendulum: 

  
T = 1

f
= 1

1.36363
= 0.733333 ≈ 0.73sec  

                                                
♥ https://commons.wikimedia.org/wiki/File:Heinrich_Rudolf_Hertz.jpg 
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Flipping Physics Lecture Notes: 
 

Comparing Simple Harmonic Motion to Circular Motion 
 

https://www.flippingphysics.com/shm-vs-cm.html 
 

Circular motion, when viewed from the side, is simple harmonic motion. It is difficult to see on paper, which 
is why I make the videos. If you just look at the x or y direction motion of the yellow marker cap on top of the 
rotating turntable, the cap is moving in simple harmonic motion. Here is a picture, however, really, you 
should go watch the video: 

 
 
If you look at the location of the cap in one dimension as a function of time, then you end up with a 
sine/cosine curve. Again, go watch the video: 
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Flipping Physics Lecture Notes: 
 

Simple Harmonic Motion – Position Equation Derivation 
 

Circular motion, when viewed from the side, is simple harmonic 
motion. We can use this fact to derive an equation for the position of 
an object in simple harmonic motion. 
 

• r is radius of the circular motion. 
• x is the position of the cap in the x-direction, assuming the 

center of the turntable is the center of our coordinate system. 
• θ is the angular displacement of the cap from an initial 

position where the cap was at its extreme position to the right. 
 

  
cosθ = A

H
= x

r
⇒ x = r cosθ  & 

  
ω = Δθ

Δt
=
θ

f
−θ

i

t
f
− t

i

= θ − 0
t − 0

= θ
t
⇒θ =ωt  

• Assuming we let   θ i
= 0; t

i
= 0;θ

f
= θ; t

f
= t  

  
x = r cosθ = r cos ωt( )  & 

  
ω = Δθ

Δt
= 2π

T
= 2π f  remember: 

  
f = 1

T
 

Therefore   θ =ωt = 2π ft  and 
  
x = r cosθ = r cos ωt( ) = r cos 2π ft( )  

 
Identifying that the maximum displacement from equilibrium position is the amplitude, A, is also r in the 

position equation. Therefore: 
  
x t( ) = Acos 2π ft( )  

 
Notice this is an equation which can be used to describe an object oscillating in simple harmonic motion. 

The equation could also be: 
  
x t( ) = Asin 2π ft( )  or even 

  
x t( ) = Acos 2π ft +φ( ) . 

• φ is the phase constant and phase shifts the sine and cosine wave along the horizontal axis. 
Realize φ is not in the AP Physics 1 curriculum, however, it is very useful. 

• For example: 
  
x t( ) = Acos 2π ft( ) = Asin 2π ft + π

2

⎛
⎝⎜

⎞
⎠⎟

 

 
Some useful points: 

• θ was in radians in our derivation, therefore angles in the equations for simple harmonic motion are 
in radians and your calculator needs to be in radians when using these equations. 

• ω is angular frequency which is not the same as frequency, f. 

o 
  
ω = Δθ

Δt
= 2π

T
= 2π f  

• Yes, 
  
T = 2π

ω
, is on the AP Physics equation sheets, however, you are much better served to 

remember and understand its derivation. 
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Flipping Physics Lecture Notes: 
 

Simple Harmonic Motion - Velocity and Acceleration Equation Derivations 
 
Previously♥ we derived the equation on the AP Physics 1 equation sheet for an object moving in simple 

harmonic motion: 
  
x t( ) = Acos 2π ft( ) . 

 
In order to derive the equations for velocity and acceleration, let’s get position in terms of angular 

frequency:
  
f = 1

T
 & 

  
ω = Δθ

Δt
= 2π

T
= 2π f  therefore 

  
x t( ) = Acos 2π ft( ) = Acos ωt( ) . 

Let’s add the phase constant that shifts the wave along the horizontal axis: 
  
x t( ) = Acos ωt +φ( ) . 

 
Velocity is the derivative of position as a function of time. I know some of you might not have taken 
calculus yet and might not understand derivatives. Realize you need derivatives to derive velocity and 
acceleration simple harmonic motion equations. Some of this math might go over your heads, however, it 
is still useful to get some exposure to. J   
       Uses chain rule.  
 

  
v = dx

dt
= d

dt
Acos ωt +φ( )⎡⎣ ⎤⎦ = A

d
dt

cos ωt +φ( )⎡⎣ ⎤⎦ = A −sin ωt +φ( )⎡⎣ ⎤⎦
d
dt

ωt +φ( )⎡

⎣
⎢

⎤

⎦
⎥  

  
⇒ v t( ) = −Asin ωt +φ( )ω ⇒ v t( ) = −Aω sin ωt +φ( )  

Note: Because  −1≤ sinθ ≤1 �   vmax
= Aω  

 
The derivation of acceleration is very similar:  

 Again, uses chain rule. 
 

  
a = dv

dt
= d

dt
−Aω sin ωt +φ( )⎡⎣ ⎤⎦ = −Aω d

dt
sin ωt +φ( )⎡⎣ ⎤⎦ = −Aω cos ωt +φ( )⎡⎣ ⎤⎦

d
dt

ωt +φ( )⎡

⎣
⎢

⎤

⎦
⎥  

  
⇒ a = −Aω cos ωt +φ( )⎡⎣ ⎤⎦ ω( )⇒ a t( ) = −Aω 2 cos ωt +φ( )  

Again note: Because  −1≤ cosθ ≤1  �   amax
= Aω 2  

 
Remember: Because the derivation of these equations requires theta to be in radians, all angles in these 
equations need to be in radians and your calculator needs to be in radian mode when using equations for 
position, velocity, and acceleration as a function of time in simple harmonic motion. 
 

                                                        
♥ https://www.flippingphysics.com/shm-position.html 
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Flipping Physics Lecture Notes: 
 

Simple Harmonic Motion – Graphs of Position, Velocity and Acceleration 
 
Previously we derived equations for position, velocity, and acceleration of an object in simple harmonic 

motion: 
  
x t( ) = Acos ωt +φ( ); v t( ) = −Aω sin ωt +φ( ); a t( ) = −Aω 2 cos ωt +φ( )  

 

Angular frequency, ω, derivation: 
  
f = 1

T
& ω = Δθ

Δt
= 2π

T
= 2π f  

 
For our graphs, we are going to assume the phase constant, ɸ, is zero. In other words the graphs will not 
be phase shifted on the horizontal axis. 
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!
v = d

!
x

dt
⇒ velocity = slope of position vs. time  

 

   

!
a = d

!
v

dt
⇒ acceleration = slope of velocity vs. time  
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Flipping Physics Lecture Notes: 
 

Simple Harmonic Motion – Graphs of Mechanical Energies 
 
As previously determined, an object in simple harmonic motion has the following values: 

Position(s) x Velocity Acceleration 
1 & 3 Maximum magnitude, A 0 Maximum magnitude, Aω2 

2 0 Maximum magnitude, Aω 0 
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In the complete absence of friction, mechanical energy is conserved: 
  
ME

total
= 1

2
m v

max( )2
= 1

2
kA2  

 
However, the reality is that some energy will be converted to internal energy of the spring via work done 
by friction: 
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Flipping Physics Lecture Notes: 
 

Demonstrating Position, Velocity, and Acceleration 
of a Mass-Spring System 

 
The basic equations of simple harmonic motion are: 

  
y t( ) = Acos ωt +φ( ); v t( ) = −Aω sin ωt +φ( ); a t( ) = −Aω 2 cos ωt +φ( )  

For our demonstrations we are going to assume the phase constant, φ , is zero. This means there is no 
phase shift in our demonstration. 
 
The position, velocity, and acceleration as a function of time graphs: 

 

 

Determining the period using the time for two cycles: 
  
2T = 2.72sec ⇒T = 2.72

2
=1.36sec  
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Determining the spring constant using the period and the mass: 

  
T = 2π m

k
⇒T 2 = 4π 2 m

k

⎛
⎝⎜

⎞
⎠⎟
⇒ k = 4π 2m

T 2
⇒ k =

4π 2 0.305( )
1.362

= 6.5100 ≈ 6.51
N
m

 

  
m = 305g × 1kg

1000g
= 0.305kg

 
Just so you know, the 305 grams includes the mass of the mass hanging.

 

 
The best-fit line equation for position as a function of time: 

 
 
Determining period using angular frequency, ω: 

  
ω = Δθ

Δt
= 2π

T
⇒T = 2π

ω
= 2π

4.66
=1.34832 ≈1.35 sec  
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Flipping Physics Lecture Notes: 
 

Creating Circular Motion from Sine and Cosine Curves 
 
Honestly, you’ve got to watch the video: 
 
https://www.flippingphysics.com/circular-motion-sine-cosine.html 
 
It’s why I make them. You will understand this concept better if you watch the objects in simple harmonic 
motion creating the circular motion. 
 

 


