College Prep Physics II - Video Lecture Notes - Chapter 19

Video Lecture \#3
Finding the cost to power light bulbs and Defining Kilowatt Hour
$\$ 0.12$
Example Problem: 3 Light Bulbs; $\mathrm{P}_{\mathrm{f}}=15$ watts; $\mathrm{P}_{\mathrm{i}}=60$ watts; $\Delta \mathrm{V}=120 \mathrm{~V} ; \frac{\$ 0.12}{\mathrm{~kW} \cdot \mathrm{hr}}$ $\frac{3 h r}{d a y}$ (Bulbs are powered for this much time)
(yes, there are 24 hours in a day, however, the light bulbs are not on 24 hours each day.)
(A standard household circuit in the United States has a potential difference of 120 V .)
$\Delta P=P_{f}-P_{i}=15-65=-50$ watts $\Rightarrow\|\Delta P\|=50$ watts
$\Delta V=I R \Rightarrow R=\frac{\Delta V}{I}=\frac{120}{I}=$????? (we don't know the current.)
$P=\frac{\Delta V^{2}}{R} \Rightarrow R=\frac{\Delta V^{2}}{P}=\frac{120^{2}}{15}=960 \Omega$
Power saved by three bulbs: $P_{\text {saved }}=3 \times 50=150 \mathrm{watts} \times \frac{1 \mathrm{~kW}}{1000 \mathrm{watts}}=0.15 \mathrm{~kW}$
$0.15 \mathrm{~kW} \times \frac{3 \mathrm{hr}}{\text { day }}=\frac{0.45 \mathrm{~kW} \cdot \mathrm{hr}}{\text { day }} \Rightarrow\left(\frac{0.45 \mathrm{~kW} \cdot \mathrm{hr}}{\text { day }}\right)\left(\frac{\$ 0.12}{\mathrm{~kW} \cdot \mathrm{hr}}\right)\left(\frac{365.242 \text { days }}{1 \text { year }}\right)=\frac{\$ 19.723}{\text { year }}$
$\$ 108 \times \frac{1 \text { year }}{\$ 19.723}=5.4758 \approx 5.5$ years
What is a KiloWatt Hour?
$(k W \cdot h r)\left(\frac{1000 W}{1 k W}\right)\left(\frac{3600 s}{1 h r}\right)=3,600,000 \mathrm{~W} \cdot s=3,600,000 \frac{\mathrm{~J}}{\mathrm{~s}} \cdot s=3,600,000 s=3.6 \mathrm{MJ}$
$1 \mathrm{~kW} \cdot h r=3.6 \mathrm{MJ}$ (you will not be given this as a conversion, you must derive it, every time.)

