College Prep Physics II – Video Lecture Notes – Chapter 15 Video Lecture #1 – Chapter 15.1 - Introduction to the Refraction of Light and the Index of Refraction Thank You, Stephanie Hong, for these notes.

Light bends when it enters a diffe	rent medium:
refraction	free Har
€i ⇒ incident angle	1
0' => reflected angle	Success of P
Or => refracted angle	
9	. A
Why does light bend?	
is because the speed of light is	reduced to medium
other than a vacuum	The second the meeting
V=fa fis constant	
1 Jervease	Company and
clerease decision	man to F
Index of refraction, n	ma 3. P = 9
n = V dimensionless	
Lac = speed of light in vacuum	i have been a
v = speed of light in medium	Fater &
	2 2 2 2 3
nair = 1.000293	1- (-1)-2
	5.1

Video Lecture #2 – Chapter 15.1 - Introduction to Dispersion, Snell's Law with an Example Problem

dispersion - the process of separating polychromatic
light into its different wavelengths.
Snell's law

$$n_i \sin \theta_i = n_r \sin \theta_r$$

- air \rightarrow glass
- as n T, light bent toward normal
- as n L, light bent away from normal
 $p_i 567, \pm 1$: $\theta_r = ?$ nair = 1.000 = n;
 $\theta_i = 25.0^\circ$ $n_{water} = 1.333 = n_r$
 $n_i \sin \theta_i = n_r \sin \theta_r$
 $\sin^{-1}(\frac{n_i \sin \theta_i}{n_r}) = \theta_r = \sin^{-1}(\frac{(1.00) \sin 25.0^\circ}{1.333}) = 18.4841894 \approx 18.5^\circ$

Video Lecture #3 – Chapter 15.1 - Understanding how a Mirage Works - Refraction of Light (no lecture notes)

Video Lecture #4 – Chapter 15.2 - Introduction to Converging Lenses (or Bi-Convex), Fresnel Lenses and Image Characteristics

Video Lecture #5 – Chapter 15.2 - Example - Learning how to Draw a Ray Diagram of a Converging Lens (or Bi-Convex) includes the Math

Video Lecture #7 – Chapter 15.2 - A Basic Explanation of the Optics of the Human Eye (no lecture notes)

Video Lecture #8 - Chapter 15.3 - Introduction to Total Internal Reflection and the Critical Angle

Total Int	ernal Reflection
$\Theta_c = c$	critical angle
، وبا	the minimum incident angle at which all
	neident light will be totally internally
	reflected
	- if ti ≥ total internal veflection
·	- nisin di = nrsin dr
-	$-\Theta_i = \Theta_c$ when $\Theta_r = 90^\circ$
L,	$-n_i \sin \theta_c = n_r \sin (90)^{-1}$
	$-\sin\theta_c = \frac{n_c}{n_i}$
	$12\sin\theta_e = \frac{n_r}{n_i}$
	$1 \ge \frac{n_r}{n_i}$
	$n_i \ge n_c$

Video Lecture #9 - Chapter 15.3 - Example - Total Internal Reflection, Critical Angle and Drawing the Ray Diagram

	Ex. nai = 1.000	⊖; =0°
	Roy Nblock = 2,50	$n_i \sin \theta_i = n_r \sin \theta_r$
_		air > block
	a of	incident -s refracting
	he soo	(1) sin (0) = (2.5) sin 6.
	1 05 0, 02 W	0 = 2.5 sin fr
	- 1 4 to 60.	0=sinbr
		$\theta_r = \sin^{-1}\theta = 0$
	$\theta_1 = 30^\circ \Rightarrow \theta_r = ?$	
	n; sino; = n, sino,	$\theta_1 = \theta_2 = \theta_3 = 30^\circ > \theta_c$
-	block -> air	totally internally reflected
	incident -> refracting	64=30°
	(2.5) sin 30" = (1) sin Or	$\theta_5 = 66^\circ > \theta_c$
	1.25= sin Or	totally internally reflected
	$\theta_{\Gamma} = \sin^{-1} 1.25 = impo$	ssible b6=60"
	totally internally r	effected 07=30"
	Sint = mr	$\Theta_i = O^* < \Theta_c$
	$\theta_c = \sin^{-1}\left(\frac{n_r}{m_i}\right) = \sin^{-1}\left(\frac{n_r}{m_i}\right)$	$r(\frac{1}{2s})$ refraction!
	0c=23.578°	$\Theta_{\gamma} = 0$

Video Lecture #10 – Chapter 15.3 - Adding to the Table of Friends – Lenses (no lecture notes)