College Prep Physics II - Video Lecture Notes - Chapter 16

Video Lecture #1 – Chapter 16.1 - Introduction to Constructive and Destructive Interference of Light and Diffraction Thank You, Puja Patel, for these notes.

Interference of light
- Superposition
- constructive Interference > Brighter light
- Destructive Interference > no light.
- sound: all wavelengths travel at the same speed NOT TRUE FOR LIDIHT!
- constructive Interference . TOtal Destructive Interference
pm pm
* in phase with * phase difference of
one another naif a wavelength (12), 12) et
* phase difference Of the wavelength
-Diffraction: waves go out in all directions when going
of the way.
- coherence: two light sources in phase with one
anorna
- mono-chromatic light, one wavelength or one color

Video Lecture #4 – Chapter 16.1 - Page 604 #2 A Problem - Finding the Angle for an Interference Maximum in a Double Slit Experiment

p. 604 #2		8	
d= 0.25 mm	Ð = ?	d= 0.250	×10-3 m
2= 546.1 Nm	m = 1	λ = 546.1	x10-9 m
dsin0 = m	X		
$sin = \frac{m}{2}$	<u>))</u>		
$\theta = s \ln^{-1}$	$\left(\frac{m\lambda}{d}\right)$		
$\theta = \sin^{-1}$	1. 546.1 ×10-9)	
AND ATTAC SUN	(0.250 × 10 '	/	
Đ= 0.125	1570003 0 *	0.125°	No. 40

Video Lecture #5 – Chapter 16.1 - Page 604 #3 A Problem - Finding the Angle for an Interference Minimum in a Double Slit Experiment

Video Lecture #6 - Chapter 16.2 - Introduction to a Diffraction Grating and Interference Maxima and Minima

Video Lecture #7 – Chapter 16.2 - Page 611 #1 A Problem - Determining the Number of Lines per Centimeter on a Diffraction Grating

$$\begin{array}{cccc} p.0(141) \\ \lambda = 546.1 \times 10^{-9} \text{ m} & dsinter = m\lambda \\ sinter & sinter & sinter \\ m = 1 & sinter & sinter \\ \theta = 21.2^{\circ} & d = \frac{m\lambda}{sinter} \\ \frac{1}{d} = 2\left(\frac{110es}{cm}\right) & d = \frac{(1)(546.1\times 10^{-9})}{sin 21.2^{\circ}} \\ d = \frac{(1)(546.1\times 10^{-9})}{sin 21.2^{\circ}} \\ d = 1.51012969 \times 10^{-7} & \frac{1}{line} \\ \frac{1}{d} = \frac{1}{1.51012969 \times 10^{-7}} \\ \frac{1}{d} = 0621.9 \\ \frac{1000}{cm} \end{array}$$