Video Lecture #1 – Chapter 21.1 - Introduction to Magnetic Poles and the Law of Poles

Thank You, Puja Patel, for these notes.

Video Lecture #2 – Chapter 21.1 - Introduction to Magnetic Field and the Magnetic Poles of the Earth

Video Lecture #3 – Chapter 21.3 - Introduction to the Magnetic Force and Teslas

\[F_B = qvB \sin \theta \]
- \(q = \) charge
- \(v = \) velocity
- \(B = \) magnetic field
- \(\theta = \) angle between \(v \) & \(B \)

\[B = \frac{N}{c \cdot m} = \frac{N}{\xi \cdot m} = \text{Tesla}, \text{T} \]

Video Lecture #4 – Chapter 21.3 - Introduction to the Right Hand Rule for the Direction of the Magnetic Force with Examples

The Right-hand rule
- Fingers \(\rightarrow \) point \(w \) direction of velocity
- Finger curl \(\rightarrow \) direction of \(B \) (90°)
- Thumb \(\rightarrow \) points in \(F_B \) on a \(\theta \) charge

\(\theta \) charge it is 180° from where your thumb is.

Video Lecture #5 – Chapter 21.3

Magnetic Force Right Hand Rule Examples using Cardinal Directions (North, South, East, West) (No Lecture Notes)
Video Lecture #6 – Chapter 21.3 - Introduction to the Magnetic Force on a Current Carrying Wire

\[F_B = I L B \sin \theta \]
- \(I \): current
- \(L \): length of wire
- \(B \): magnetic field
- \(\theta \): angle between \(I \) & \(B \)

Video Lecture #7 – Chapter 21.3 - Introduction to the Path of a Charged Particle in a Constant Magnetic Field

- \(F_B \) is \\perp to direction of \(\vec{v} \)
- \(F_B \) in the in-direction

\[F_{\text{fin}} = F_B = ma \]
- a charge moving \(\perp \) to a \(B \)-field will move in a circle
- speed = const.
- velocity \(\neq \) const.
Video Lecture #8 – Chapter 21.3 - Example - An Electron Moving in a Constant Magnetic Field: Part a) Finding Speed

Thank You, Kallie Bergers, for these notes.

Video Lecture #9 – Chapter 21.3 - Example - An Electron Moving in a Constant Magnetic Field: Part b) Finding the Period

Video Lecture #10 – Chapter 21.3 - Example - An Electron Moving in a Constant Magnetic Field: Part c) Finding Electric Potential Difference