Flipping Physics
  • Home
  • Physics Videos
    • AP Physics 1 >
      • AP Physics 1 Review
      • AP Physics 1 Teachers
    • AP Physics C >
      • AP Physics C Review
      • AP Physics C Teachers
    • AP Physics C E&M
    • Vertical Videos
    • Playlists
  • URP
  • GIFs
    • Kinematics GIFs
    • Dynamics GIFs
    • Work Energy and Power GIFs
    • Momentum and Impulse GIFs
    • Rotational Kinematics GIFs
    • Rotational Dynamics GIFs
    • Universal Gravitation GIFs
    • Simple Harmonic Motion GIFs
    • Fluids GIFs
    • Waves GIFs
    • Sound GIFs
    • Electricity GIFs
  • About
    • Comments
    • Teacher Comments
    • Music
    • Flipping >
      • Gameful
      • Physics Labs
      • How to Flip
      • How to Learn
      • The Basics >
        • 8 Don'ts
        • 9 Dos
    • FAQ
    • Making a Video
    • EDpuzzle
    • Spreadsheets
    • Technology
    • Survivor Application
  • Give
  • Shop
  • Help Out
    • Quality Control
    • Collaborate
  • Blog

A Brief Look at the Force of Drag using Numerical Modeling (or The Euler Method)
(22:00)

Original Problem
Lecture Notes
Give
AP Physics 1
Next Video
This is how you include air resistance in projectile motion.  It requires the Drag Force and Numerical Modeling (or the Euler Method).  It is also very helpful to use a spreadsheet to do the calculations.  I prove a statement from a previous projectile motion  problem video, "Air resistance decreases the x displacement of the ball by less than 1 cm."

The Excel file created in the video.

Lacrosse Ball Information:
  • Weight = 5.125 oz.
  • Drag Coefficient = 0.5
  • Circumference = 7.875 in.
  • Density of Air = 1.275 kg/m^3
Picture
Content Times:
0:22 The statement this video proves
1:01 The basic concept of air resistance
1:54 The Free Body Diagram
2:20 The Drag Force Equation
3:13 Information about the Lacrosse Ball
4:03 The Drag Coefficient
4:55 The Density of Air
5:18 How the Drag Force affects the motion
5:58 The basic idea of Numerical Modeling (or the Euler Method)
6:50 Solving for the acceleration in the x direction
8:53 Solving for the final velocity in the x direction
9:54 Solving for the final position in the x direction
11:41 Entering the Lacrosse Ball information into Excel
13:34 Solving for the Drag Force in x direction in Excel
14:29 Solving for the acceleration in the x direction in Excel
14:58 Solving for the final velocity and final position in the x direction in Excel
15:46 Solving for the acceleration in the y direction
17:21 Solving for all the variables in the y direction in Excel
19:13 Click and Drag Copy. Harnessing the Power of Excel!
19:43 Understanding the numbers in Excel
20:35 Solving for the decrease in the x displacement caused by the Drag Force

                Copyright © 2013-2025 · All Rights Reserved · Flipping Physics